
--

--..------- - ------- -. ---- - - ---------~-,-

Virtual Machine/
System Product

eMS forr Slfs~em rP>rrog]rrammoD1lg

Release 5

SC24-5286-0

I", ,,' ," .,'I! I",i,,:.l r,' " I 1,1 •• ,1',(',.

First Edition (December 1986)

This edition, SC24-5286-0, applies to Release 5 of IBM Virtual Machine/System
Product (VM/SP) (program number 5664-167) unless otherwise indicated in new
editions or Technical Newsletters. It contains material formerly found in the
VM/SP System Programmers Guide, SC19-6203 and the VM/SP eMS User's Guide,
SC19-6210. Changes are made periodically to the information herein; before using
this publication in connection with the operation of IBM systems, consult the
latest IBM System/370, 30xx, and 4300 Processors Bibliography, GC20-0001, for the
editions that are applicable and current.

Summary of Changes

For a detailed list of changes, see page "Summary of Changes" on page 379.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality. Publications are
not stocked at the address given below.

A form for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, New York, U.S.A.
13760. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

l
- ,.

')r 1 '-"'l',""'1 ':'-")
U \..jUl.. (!";"--.J

This publication describes reference information about the functions of the
Conversational Monitor System (CMS) component of VM/SP. The
information is intended for system programmers, system analysts, and
programming personnel. Knowledge of Basic Assembler language and
experience with programming concepts and techniques are prerequisites to
using this publication.

This publication is one of a set of reference manuals for VM/SP system
programmers. The other books in the set include:

o VM/ SP CP for System Programming
o VM/ SP Group Control System Command and Macro Reference
o VM/ SP Transparent Services Access Facility Reference
o VM System Facilities for Programming
o VM Diagnosis Guide

The order numbers for these books and related publication can be found
under "Bibliography" in the back of this manual.

Some of the topics discussed in this publication are:

o Processing abends
o Handling interrupts
o Using storage
o Developing and executing programs
o Linkage conventions
o Updating programs
o Developing commands and messages
o Developing as programs
o Developing VSE programs
o Using VSAM functions
o Tailoring your CMS system
o Using the batch facility
o U sing auxiliary directories
o Understanding assembler virtual storage requirements
o CMS macro library

After the appendices, the following sections are available to help you use
this manual more easily:

o "Summary of Changes"
o "Glossary of Terms and Abbreviations"
o "Bibliography"
o "Index"

Preface 111

1 v VM/SP eMS for System Programming

Chapter 1. IntrouucinG crllS 1
The CMS Command Language 1
The File System .. 2
Preferred Filetypes .. 3
Program Development 4

Chapter 2. Proccooill[J Abcndo 5
Abend Exit Routine Processing 5
CMS Abend Recovery 6

Chapter 3. Handline Int3i'rupto in CIH8 D
SVC Interrupts ... 9

Internal Linkage SVCs 9
Other SVCs ... 10

Input/Output Interrupts 10
Terminal Interrupts .. 11
Reader/Punch/Printer Interrupts 12
User-Controlled Device Interrupts 12
Program Interrupts ... 13
External Interrupts ... 13
Machine Check Interrupts 13

Chapter 1. Using StoraGe 15
Structure of CMS Storage 15

Structure of DMSNUC 21
User and Transient Program Areas 23

Managing CMS Storage 23
GETMAIN Free Storage Management 24
DMSFRE Free Storage Management 27
DMSFRE Service Routines 35
Error Codes from DMSFREE, DMSFRES, and DMSFRET 37
Storage Protection Keys 38
CMS Handling of PSW Keys 39

Chapter 5. DevelopinG Pror:;rnn:ls under CI1;IS •.......•••....•• '.13
Program Linkage (SVC Handling) '.................... 43

Register Usage ,......... 43
Parameter LIsts ... 46
Common SVC Calls 48
Search Hierarchy for SVC 202 54
Dynamic Linkage/SUBCOM 59
Returning to the Calling Routine 61

The CMS Subset Environment 64
Assembling Programs 65
Executing Programs "............................. 66

Executing TEXT Files :............................. 67

Contents V

Resolving External References 68
Controlling the CMS Loader 68
Creating Program Modules 71
The Transient Program Area '72
Creating EXEC Procedures 73

CMS Macro Instructions 75
Disk File Manipulation 75
Terminal Communications 84
Unit Record and Tape I/O 85
Handling Interrupts 85

System Product Editor Interface to Access Files in Storage 86
CMS Interface for Display Terminals 88

The CONSOLE Macro 90
The DISPW Macro 93

Chapter G. Updating Source Profjrnms Using Cn1S •••••••••••• 95
The UPDATE Philosophy 95
Update Files .. 96
Sequencing Output Records 99
Multiple Updates 102
Multiple Updates with XEDIT 107
The VMF ASM EXEC Procedure 109
Updating EXECs and Macros 110
The STK Option 111

Chapter 7. Developincr Commando and n·1emJage Files 113
Using the Parsing Facility 113

Advantages of the Parsing Facility 113
Advantages of DLCS 113
Overview 114
Supported CMS Commands 116
Coding Your Own Command Syntax with DLCS 117
DBCS and the Parsing Facility 130
Examples: Using the Parsing Facility 131
Creating and Distributing Your Own CMS Commands 144

Using Message Repository Files 145
Overview of Creating and Using a Message Repository 146
Rules for Making Your Own Repository 148
Substitution in Messages 151
Dictionary Substitution 151
Creating Your Own CMS Messages 153
Creating Your Own HELP Files 154
Making Your Messages Available to Others 154

Creating Immediate Commands 154

Chapter fl. Developing OS Programs under cn~s 157
Using OS Data Sets in CMS 159

OS Simulated Data Sets ~ 160
Restrictions for Reading OS Data Sets 161
The ACCESS Command 161
The FILEDEF Command 162
Creating CMS Files from OS Data Sets 169 /

Using CMS Libraries 171

vi VM/SP eMS for System Programming

Macro Libraries (MACLIBs) 172
TEXT Libraries (TXTLIBs) 181
OS Module Libraries and CMS LOADLIBS 183
The LKED Command 186

OS Data Management Simulation 188
Handling Files that Reside on CMS Disks 188
Handling Files that Reside on OS Disks 189
Simulating OS Supervisor Calls 189
OS Macros .. 191
Access Method Support 199
Reading OS Data Sets Using OS Macros 203

OS Tape Volume Switching 204

Chapter D. Developing VSE ProgrnmG under Cll,lS 207
Entering the CMS/DOS Environment 208

DL/I in the CMS/DOS Environment 210
Using DOS Files on DOS Disks 211

Reading DOS Files 212
Creating CMS Files from DOS Libraries 213

The ASSGN Command 214
Assigning System Logical Units 215
Compiler I/O Assignments 216
Manipulating Device Assignments 217
Listing I/O Assignments 217
Virtual Machine Assignments 218

The DLBL Command 218
Entering File Identifications 219
Clearing and Displaying File Definitions 220

Using DOS Libraries in CMS/DOS 220
The SSERV Command 221
The RSERV Command 222
The PSERV Command 222
The ESERV Command 223
The DSERV Command 224
The DOSLKED Command 225
DOS Core Image Libraries 225

Using Macro Libraries 225
Creating CMS MACLIBs 225
The MACLIB Command 227
Manipulating MACLIB Members 230
The MACLIST Command 231
The GLOBAL Command 235
System MACLIBs 235

VSE Assembler Language Macros Supported 236
Assembling Source Programs 238
Link-editing Programs in CMS/DOS 240

Linkage Editor Input 241
Linkage Editor Output: CMS DOSLIBs 242

Executing Programs in CMS/DOS 243
Executing DOS Phases 244
Search Order for Executable Phases 244
Making I/O Device Assignments 245
Specifying a Virtual Partition Size 246
Setting the UPSI Byte 247

Contents VB

Debugging Programs in CMS/DOS
U sing EXEC Procedures in CMS/DOS

Hardware Devices Supported
VSE Supervisor and I/O Macros Supported by CMS/DOS

Supervisor Macros ;
Declarative Macros (Sequential Access Method I/O Macros)
Imperative Macros (Sequential Access Method I/O Macros)

VSE Transient Routines ~
EXCP Support in CMS/DOS ~
VSE Supervisor Control Blocks Simulated by CMS/DOS
CMS/DOS User Considerations and Responsibilities

VSE System Generation and Updating Considerations
VM/SP Directory Entries
When the VSE System Must be Online
Performance .. .
Execution Considerations and Restrictions

Chapter 10. U sine; 11cCCSG n~ethod Serviccs and VSArlI under CDfl:S
nnd eMS/DOS•..... 0 0 •••••••••• 0 •• 0 •••• 0 •••• 0 ••

Executing VSAM Programs Under CMS 0 ••••••• 0 ••••••

The AMSERV Command 0 •••• 0 ••

AMSERV Output Listings
Controlling AMSERV Command Listings 0 ••••• 0 ••

Manipulating OS and DOS Disks for Use with AMSERV 0 ••••

Data and Master Catalog Sharing '
Disk Compatibility 0 •••••

Allocating Space
Using VM/SP Minidisks
The LISTDS Command 0 •••• 0 ••

Using Temporary Disks
Defining DOS Input and Output Files 0 •••••

Using VSAM Catalogs
Using Job Catalogs 0 •••••••••

Catalog Passwords
Verifying A Catalog Structure
Defining and Allocating Space for VSAM files
Using Tape Input and Output 0 •

Defining OS Input and Output Files
Allocating Extents on OS Disks and Minidisks
Using VSAM Catalogs
U sing a Job Catalog
Catalog Passwords 0 •••••••••••

Verifying a Catalog Structure
Defining and Allocating Space for VSAM files .. '
U sing Tape Input and Output

Using AMSERV under CMS
The DEFINE and DELETE Functions 0 ••••••••

The REPRO, IMPORT, and EXPORT (or EXPORTRA/IMPORTRA)
Functions '

Writing EXECs for AMSERV and VSAM 0 •••••••

ISAM Interface Program (TIP)
VSE/VSAM Macros Supported

Obtaining the VSE/VSAM Macros 0 •• 0 •••• 0 ••••

viii VM/SP eMS for System Programming

247
247
249
249
250
258
267
268
269
269
270
270
271
271
272
272

273
274
276
277
277
278
279
280
280
281
281
283
284
285
288
289
289
290
292
294
295
296
299
299
300
300
303
304
305

307
309
310
311
311

I
I
I
I
I·
I
I
I
I
I
I
I
I
I

VSE Supervisor Macros and Logical Transients Support for VSAM 312
OSjVSAM Macros Supported in CMS 312

OSjVSAM Error Codes 316
Hardware Devices Supported 319

Ch:'lptCl' 11. r.l'~lilol'h1~ Your Crl18 Syotcnl 321
Saving the CMS System 321

Saved System Restrictions for CMS 322
Using the System Profile, SYSPROF EXEC, for Tailoring 322

What the System Profile Does 322
Invoking the IPL CMS Command 323
How to Save a Named System 325
How to Create or Change SYSPROF EXEC 325
How to Bypass the System Profile 327
Setting Up a Protected Application Environment 327
What the System Profile Can Do for Installations 328

Sharing File Directory Information 328
The SA VEFD Command 329
Putting File Directory Information into Shared Storage 330
Usage Notes ... 330
Messages and Return Codes 331

Sharing EXECs and Editor Macros 331

Chaptc~:...· 12. uoinG th'c CE.J8 Batch :i?acility 333
Install,ing the CMS Batch Machine 334
Resetting the CMS Batch Facility System Limits 335
Writing Routines To Handle Special Installation Input 335

BATEXIT1: Processing User-Specified Control Language 335
BATEXIT2: Processing the Batch Facility jJOB Control Card 335

EXEC Procedures for the Batch Facility Virtual Machine 336
Data Security under the Batch Facility 336
Improved IPL Performance Using a Saved System 336

.ch~l::r(;:)r 1:3. ULiinC; l .. u::iliary Directories 339
Adding an Auxiliary Directory 339

Generating the Auxiliary Directory 339
Initializing the Auxiliary Directory 340
Establishing the Proper Linkage 341

Creating an Auxiliary Directory 342

CIU121tCl' Id. Vntlcl'st.:uulin[; ASSc.Glbler Virtual Storage
~:Jqt-!il'C111ClltG •••••••••••••••••••••••••••••••••••••• 345

Overlay Structures .. 345
Pre structured Overlay 346
Dynamic Load Overlay 347

APP:JIUli::8S

i:.PPclldi:: iL ,::;1',;18 Ivlam.'o Library•....... 351

Appcndi:: n. Snn1plc Tcrnlinal Session for as Progralnlners ... 355

A::'lL:Jcndi:: C. Sarnplc ri'ol.·lnillul Session for DOS Pl'ogl'UInn'lerS .. 3Gl

Contents IX

Appendhr D. Sample Terminal Session Using Access r/lethod
Services ... 369

Summary of Changes 379
Structural Changes 379
Technical Changes for VM System Facilities for Programming 381
Summary of Changes for the VMjSP System Programmer's Guide .. 383

Glossary of Terms anel Abbreviations arm
Abbreviations .. 389
Glossary .. 391

BibliograIlhy .. aD5

Indel: ..•...................•................•...... .::101

x VM/SP C:r\1:S for System Programming

1. CMS Storage Map 1 18
2. CMS Storage Map 2 19
3. CMS Storage Map 3 20
4. Devices Supported by a CMS Virtual Machine 22
5. Register Contents When Called Routine Starts 45
6. PSW Fields When Called Routine Starts 45
7. SVC 202 High-Order Byte Values of Register 1 49
8. CMS Command Processing 57
9. SVC 202 Processing 58

10. FSCB Format ... 75
11. A Sample Listing of a Program that Uses CMS Macros 83
12. Updating Source Files with the UPDATE Command 100
13. An Update with a Control File 106
14. Sample REXX Program 1 135
15. Sample REXX Program 2 136
16. Sample Assembler Program 1 138
17. Sample Assembler Program 2 140
18. as Terms and CMS Equivalents 158
19. CMS Commands that Recognize as Data Sets on as Disks 159
20. Creating CMS Files from as Data Sets 171
21. Sample MACLlST Screen 177
22. Simulated as Supervisor Calls 189
23. CMS/DOS Commands and CMS Commands with Special Operands 209
24. Sample MACLlST Screen 232
25. VSE Macros Supported by CMS 237
26. Physical laCS Macros Supported by CMS/DOS 250
27. SVC Support Routines and Their Operation 250
28. CMS/DOS Support of DTFCD Macro 259
29. CMS/DOS Support of DTFCN macro 261
30. CMS/DOS Support of DTFDl Macro 261
31. CMS/DOS Support of DTFMT Macro 263
32. CMS/DOS Support of DTFPR Macro 264
33. CMS/DOS Support of DTFSD Macro 265
34. Options of OS/VSAM Macros Supported in CMS 313
35. VSE/VSAM to OS/VSAM Error and Return Code Mapping for

OPEN Errors .. 316
36. VSE/VSAM to OS/VSAM Error and Return Code Mapping for

CLOSE Errors 318
37. DATA Management Request Error Return Code Mapping 319
38. Parameters Passed to SYSPROF EXEC 326
39. An Overlay Structure 346
40. New VM/SP System Programming Manuals for VM/SP Release 5 380

Figures Xl

Xll VM/SP eMS for System Programming

I
I r .. ---------- ----- -- -- ----- ------- --- ---- -- ------------- ---------------.------------------

l
The Conversational Monitor System (CMS), the major subsystem of VM/SP,
provides a comprehensive set of conversational facilities to the user.
Several copies of CMS may run under CP, thus providing several users with
their own time sharing system. CMS is designed specifically for the VM/SP
virtual machine environment.

Each copy of CMS supports a single user. This means that the storage area
contains only the data pertaining to that user. Likewise, each CMS user
has his own machine configuration and his own files. This makes
debugging simpler because the files and storage area are protected from
other users.

Programs can be debugged from the terminal. The terminal is used as a
printer to examine limited amounts of data. After examining program data,
the user can enter commands on the terminal that will alter the program.
This is the most common method used to debug programs that run in CMS.

CMS, operating with the VM/SP Control Program (CP), is a time sharing
system suitable for problem solving, program development, and general
work. It includes several programming language processors, file
manipulation commands, utilities, and debugging aids. Additionally, CMS
provides facilities to simplify the operation of other operating systems in a
virtual machine environment when controlled from a remote terminal. For
example, CMS creates and modifies job streams and analyzes virtual printer
output.

Part of the CMS environment is related to the virtual machine environment
created by CPo Each user is completely isolated from the activities of all
other users, and each machine where CMS executes has virtual storage
available to it and virtual storage managed for it by CPo The CP commands
are recognized by CMS. For example, the commands allow messages to be
sent to the operator or to other users and allow virtual devices to be
dynamically detached from the virtual machine configuration.

The eMS Command Language

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general system
control. The CMS commands that are useful in debugging are discussed in
the VM Diagnosis Guide manual. For detailed information on all other
CMS commands, refer to the VM/SP CMS Command Reference.

Chapter 1. Introducing CMS 1

~[juHu~0)C)Jt:.D~UfJllCj G~v~8
c:::::-:-_===-----:=:-~_ _._ _ .. ~=-==--===-=-.~:~~=:.~= .. _ _ -----.---------..J

The File System

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device is a read-only,
shared system disk. Permanent user files may be accessed from up to 25
active disks. CMS controls logical access to these virtual disks while CP
facilities manage the device sharing and virtual-to-real mapping.

User files in CMS are identified with three designators:

o A filename

o A filetype implying specific file characteristics to the CMS file
management routines.

o A filemode describing the location and access mode of the file.

User files can be created and changed directly from the terminal with the
VM/SP System Product Editor (XEDIT). XEDIT provides extensive context
editing services. File characteristics such as record length, record format,
tab locations, and serialization options can be specified. See VM/ SP
System Product Editor Command and Macro Reference for more information
on XEDIT.

The size of user files is determined by the blocksize (BLKSIZE). For disks
with a blocksize of 800 bytes, a single user file is limited to a maximum of
65,533 records and must reside on one virtual disk. The file management
system limits the number of files on the virtual disk to 3400. When a
blocksize of 512, 1024, 2048, or 4096 bytes is specified, a single user file is
limited to a maximum of 231_1 CMS records and must reside on one virtual
disk. The maximum number of data blocks available in a variable format
file on a 512-byte blocksize mini disk is about 15 times less than 231_1. This
number is the maximum number of data blocks that can be accessed by the
CMS file system due to the 5 level tree structure. The maximum number of
files on anyone disk is limited by the file management system to 231_1.
However, the actual number of files on a disk is limited by the available
disk space and the size of the user's files.

When you access a read-only disk, a hyperblock mapping table (HYPMAP)
is built. When you access a read/write disk, a hash table complex
(HASHTAB) is built. (For further details on HYPMAP and HASHTAB, see
the VJ\lI/SP Data Areas and Control Block Logic Volume 2 (CMS) manual.)
These two tables decrease the paging overhead when searching for files.
However, the hyperblock mapping table is not built if the hyperblocks for
the disk do not span three or more pages. The hash table is not built if the
hyperblocks for the disk do not span two or more pages.

CMS automatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
available space, and CMS deallocates them at completion. Compiler object
decks and listing files are normally allocated on the same disk as the input
source file or on the primary read/write disk, and are identified by

2 VM/SP eMS for System Programming

combining the input filename with the filetypes TEXT and LISTING. These
disk locations may be overridden by the user.

Virtual disks may be shared by CMS users. This capability is provided by
VM/SP to all virtual machines. Specific files may be spooled between
virtual machines to accomplish file transfer between users. Commands
allow such file manipulations as writing from an entire disk or from a
specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files,
copy files, and erase files. Special macro libraries and text or program
libraries are provided by CMS, and special commands are provided to
update and use them. CMS files can be written onto and restored from
unlabeled tapes via CMS commands.

Caution: Multiple write access under CMS can produce unpredictable
results.

Problem programs that execute in CMS can create files on unlabeled tapes
using any record length and blocksize; the record format can be fixed,
variable, or undefined.

IPreierred FileRl'pes

CMS has a list of preferred filetypes. This list consists of filetypes that are
frequently searched for, but rarely found on your disk. The list of preferred
file types is as follows:

EXEC
MODULE
CMSUTl
AUTOSAVE
XEDTEMP
XEDIT
SYSUTl
TEXT

The active disk table (ADT) contains a byte signalling which preferred
filetypes are on the disk. Before scanning the file management tables for a
file, this byte is examined to see if any files of the desired type are present
on the disk. This process avoids searching for a file that is not on the disk;
therefore, improving system performance.

For example, if you are looking for a file with one of the preferred filetypes
and the byte in the ADT indicates that the filetype is not on the disk, then
you will avoid searching the disk for the file.

Performance may be improved by keeping preferred filetypes together on
separate disks.

Chapter 1. Introducing CMS 3

~u-u~~1QJ(~QJcnuuCj C~~JJ~)
[.~:~ .. ~:: .. -:--~ .. --.-.-~.=.-.... -... --:--:--:--._-- -----_._._-_.-_ .. _--_. __ .. __ ._-_._._-_ .. _--- .. __ .. __ ._ ---. _.-. -. _ _._._ ... __ .. -._-. -_._- .. -_._ _._ ... __ -------.-.... _ .. _-_._-_ .. _._ ... _--_._--""]

Program Development

The Conversational Monitor System includes commands to create, compile,
modify, and correct source programs; to build test files; to execute test
programs; and to debug from the terminal. The commands of CMS are
especially useful for OS and VSE program development, but the commands
also may be used in combination with other operating systems to provide a
virtual machine program development tool.

eMS uses the OS and VSE compilers via interface modules. The compilers
themselves normally are not changed. To provide suitable interfaces, CMS
includes a certain degree of OS and VSE simulation. For OS, the
sequential, direct, and partitioned access methods are logically simulated.
The data records are physically kept in the chained fixed-length blocks, and
they are processed internally to simulate OS data set characteristics. For
VSE, the sequential access method is supported. CMS supports VSAM
catalogs, data spaces, ~nd files on OS and DOS disks using the Access
Method Services portion of VSE/VSAM. OS Supervisor Call functions such
as GETMAIN/FREEMAIN and TIME are simulated. The simulation
restrictions concerning what types of OS object programs can be executed
under CMS are primarily related to the OS/PCP, MFT, and MVT Indexed
Sequential Access Method (ISAM) and the telecommunications access
methods. Functions related to multitasking in OS and VSE are ignored by
CMS. For more information, see "OS Data Management Simulation" on
page 188 and "Chapter 9. Developing VSE Programs under CMS" on
page 207.

4 VM/SP eMS for System Programming

When CMS abnormally terminates, the following steps are taken:

1. After checking for any SPIE, STXIT PC, STAE, or STXIT AB exits that
apply, CMS calls DMSABN, the abend recovery routine.

2. Before typing out any abend message at the terminal, DMSABN, the
abend recovery routine, checks for any abend exit routines, set by the
ABNEXIT macro.

3. If a list of exit routines exists, the current abend exit routine (that is,
the last one set) gains control. If no abend exit. routines exist, CMS
abend recovery occurs.

Abend E,dt Routine Processing

An abend exit routine may be established to intercept abends before CMS
abend recovery begins. You must provide the proper entry and exit linkage
for this abend exit routine. See the ABNEXIT macro in the VM/SP eMS
Macros and Functions Reference for details on the register contents when
the routine receives control.

The abend exit routine receives control with the nucleus protect key and is
disabled for interrupts. Information about the abend is available to the exit
routine in the DMSABW CSECT in DMSNUC. The address of this area is
passed to the exit routine via register 1. In addition to the information
currently available in DMSABW, a fullword specified on the ABNEXIT
macro contains information for the exit's own purposes. ABUWRD is the
name of the fullword containing the information the user enters in the
UWORD parameter of the ABNEXIT macro.

An abend exit routine may choose to avoid CMS abend recovery and
continue processing normally. To do this, the exit must issue the
ABNEXIT RESET macro. This tells CMS to clear the abend condition.
The exit routine may also return to CMS to continue abend processing.

If the exit routine returns to CMS and another abend exit routine exists, it
is given control next. Each exit on the list is given control in sequence
until all the exits have been given control or until an exit chooses to avoid
CMS abend recovery, by issuing ABNEXIT RESET, and continues
processing.

If a program check occurs in the exit routine and ABNEXIT RESET was
not issued in this exit routine, DMSABN gives control to the next exit

Chapter 2. Processing Abends 5

eMS Abend Recovery

.. _ _ :~-=-J

routine on the list. If no other exit routine exists, CMS abend recovery
occurs.

You cannot set or clear abend exit routines in an abend exit routine. You
can reset an abend exit routine only in an exit routine.

If no abend exit routine exists or if the abend exit routine returns to CMS
to continue abend processing, DMSABN types out the abend message
followed by the line:

eMS

This line indicates to you that the next command can be entered.

Options available to you are:

o Issue the DEBUG command. DMSABN passes control to DMSDBG to
make the facilities of DEBUG available. DEBUG's PSW and registers
are as they were at the time the recovery routine was invoked. In
DEBUG mode, you may alter the PSW or registers. Then, type GO to
continue processing, or type RETURN to return to DMSABN·.
DMSABN continues the abend recovery.

o Issue any command (other than DEBUG). DMSABN performs its abend
recovery function and passes control to DMSINT to execute the
command that was typed in.

The abend recovery function performs the following, in sequence:

1. Clears the console input buffer and program stack.

2. Terminates all VMCF activity.

3. Reinitializes the work area stack for reentrant CMS nucleus modules.

4. Reinitializes the SVC handler, DMSITS, and frees all stacked save
areas.

5. Clears the auxiliary directories, if any. Invokes "FINIS * * *", to close
all files, and to update the master file directory.

6. Frees storage, if the DMSEXT module is in virtual storage.

7. Zeroes out the MACLIB directory pointers.

8. Frees the CMS work area, if the CMS subset was active.

9. Frets the RLDDATA buffer, used by the CMS loader to retain
relocation information for the GENMOD process, if it is still allocated.

6 VM/SP eMS for System Programming

./

10. Issues the STAE, SPIE, TTIMER, and STAX macros to cancel any
outstanding OS exit routines. Frees any TXTLIB, MACLIB, or LINK
tables.

11. Calls with a purge PLIST, all nucleus extensions that have the
"SERVICE" attribute defined.

12. Drops all nucleus extensions that do not have the "SYSTEM" attribute.
Also drops any nucleus extensions that are in type user storage.

13. Drops all SUB COM SCBLOCKS that do not have the "SYSTEM"
attribute.

14. Frees console path and device entry control blocks.

15. Drops all storage resident execs that do not have the "SYSTEM"
attribute.

16. Clears all immediate commands that are not nucleus extensions with
the "SYSTEM" attribute; returns all associated free storage.

17. Calls DMSCLN to zero out the userword of the SRPI command.

18. Calls DMSWITAB to delete all windows and vscreens that do not have
the "SYSTEM" attributes.

19. Resets the storage keys for the whole virtual machine, except the
nonshared pages, according to FREET AB. Saves the setting for
KEYPROTECT.

20. Zeroes out all FCB, DOSCB, and LABSECT pointers.

21. Frees all storage of type user.

22. Restores the setting for KEYPROTECT.

23. Zeroes out all interrupt handler pointers in IOSECT.

24. Turns the SVCTRACE command off.

25. Closes the virtual punch and printer; closes the virtual reader with the
HOLD option.

26. Reinitializes the VSE lock table used by CMS/DOS and CMS/VSAM.

27. Zeroes out all OS loader blocks, and frees the FETCH work area.

28. Cleans up the CMS IUCV environment based on the existence of the
CMS id block.

29. Clears all ABNEXIT set and returns storage.

Chapter 2. Processing Abends 7

L~._-_-_---_--_-----------------------------.-_._-_-_-__ -._-... -.. ------------------------------------~

30. Computes the amount of system free storage that should be allocated
and compares this amount with the amount of free storage actually
allocated. Types a message to the user if the two amounts are unequal.

31. Issues a STRINIT and releases any pages remaining in the flush list via
a call to DMSPAGFL, if all storage is accounted for.

After abend recovery has completed, control passes to DMSINT at entry
point DMSINTAB to process the next command.

8 VM/SP eMS for System Programming

r----.--.--.--.. --- ---.---.-- .. -.. ----.. --.---.-.-- -.- --- .. --.--.------.--.-.. --.--.- ... -.. --------- -.. -.----... --.--.. --------------.. ---------.-----.. ---.. -0-.--.-.-------.. -.---------------.--

I
I

L

SVC Inierrupts

CMS receives virtual SYC, input/output, program, machine, and external
interruptions and passes control to the appropriate handling program.

The Conversational Monitor System is SYC (supervisor call) driven. SYC
interruptions are handled by the DMSITS resident routines. Two types of
SYCs are processed by DMSITS: internal linkage SYC 202 and 203, and any
other SYCs. The internal linkage SVC is issued by the command and
function programs of the system when they require the services of other
CMS programs. (Commands entered by the user from the terminal are
converted to the internal linkage SVC by DMSINT). The OS SYCs are
issued by the processing programs (for example, the Assembler).

Internal Lin!cage SVCs

When DMSITS receives control as a result of an internal linkage SYC (202
or 203), it saves the contents of the general purpose registers, floating-point
registers, and the SYC old PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is passed in
register 1 for SYC 202 or by a half word code following SYC 203.)

For SYC 202, if the called program is not found in the internal function
table of nucleus (resident) routines, then DMSITS tries to call in a module
(a CMS file with filetype MODULE) of this name via the LOADMOD
command. If the program was not found in the function table, nor was a
module successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling program's
registers, and makes the appropriate normal or error return as defined by
the calling program.

See pages 48 and 52 for more details on SYC 202 and SYC 203.

Chapter 3. Handling Interrupts in CMS 9

Other SVCs

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or function
program, as is the case with the internal linkage SVC, DMSITS passes
control to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined SVC
table (if one has been set up by the DMSHDS program). If the user-defined
SVC table is present, any SVC number (other than 202 or 203) is looked for
in that table. If it is found, control is transferred to the routine at the
specified address.

If the SVC number is not found in the user-defined SVC table (or if the
table is nonexistent), DMSITS either transfers control to the CMSDOS
shared segment (if SET DOS ON has been issued), or the standard, system
table (contained in DMSSVT) of OS calls is searched for that SVC number.
If the SVC number is found, control is transferred to the corresponding
address in the usual manner. If the SVC is not in either table, then the
supervisor call is treated as an abend call.

The DMSHDS initialization program sets up the user-defined SVC table.
The user can provide his own SVC routines by using the HNDSVC macro.

Input/Output Interrupts

All input/output interruptions are received by the I/O interrupt handler,
DMSITI. DMSITI saves the I/O old PSW and the CSW (channel status
word). It then determines the status and requirements of the device causing
the interruption and passes control to the routine that processes
interruptions from that device.

DMSITI scans console facility device entries (CDEV) until it finds one
containing the device address that is the same as the interrupting device. If
a matching device is found and a CONSOLE 'path' is waiting for an
interrupt:

1. The wait field is cleared in the device entry,

2. The wait bit is turned off in the I/O old PSW, and

3. DMSITI returns control to the console facility by loading the I/O old
PSW.

If no path is waiting, the interrupt is considered unsolicited and DMSITI
checks for a user-defined interrupt handling routine. If DMSITI finds one,
it passes control to the routine. Otherwise, if the device also exists in a ,/
console CDEV entry, DMSITI checks if any I/O was done and if an EXIT

10 VM/SP eMS for System Programming

l_· _ .. _. _. .=-=:::'=-=":'~:":~~":':"~-=~~=~::':~.':"-'-"::":"":.::':~::"'=:_~' -- -.-- --.. -.-_ .. _ .. -.-_ .. -_. -_ _ ... _.. ..- -.. -.-.. -- --... ---.-.----.... --.-------.. --------.. --.. - .. -.- ----::J

routine is specified. If an EXIT can be called, DMSITI turns off the PSW
wait bit, loads the PSW, and exits.

If no console path performed I/O or no exits were called, the interrupt for
the virtual console is passed to the system routine (DMSCITA) found in the
CMS device table (DEVTAB). For dialed devices, the unsolicited interrupt
is ignored. If fulls ere en CMS is on, attention interrupts for the virtual
console are passed to a fullscreen read routine instead of DMSCIT A.

The device table (DEVTAB) contains an entry for each device in the
system. Each entry for a particular device contains, among other things,
the address of the program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its processing,
it returns control to DMSITI. At this point, DMSITI tests the wait bit in
the saved I/O old PSW. If this bit is off, the interruption was probably
caused by a terminal (asynchronous) I/O operation. DMSITI then returns
control to the interrupted program by loading the I/O old PSW.

If the wait bit is on, the interruption was probably caused by a nonterminal
(synchronous) I/O operation. The program that initiated the operation most
likely called the DMSIOW function routine to wait for a particular type of
interruption (usually a device end). In this case, DMSITI checks the
pseudo-wait bit in the device table entry for the interrupting device. If this
bit is off, the system is waiting for some event other than the interruption
from the interrupting device; DMSITI returns to the wait state by loading
the saved I/O old PSW. (This PSW has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an interruption from
that particular device. If this interruption is not the one being waited for,
DMSITI loads the saved I/O old PSW. This again places the machine in the
wait state. Thus, the program that is waiting for a particular interruption
is kept waiting until that interruption occurs.

If the interruption is the one being waited for, DMSITI resets both the
pseudo-wait bit in the device table entry and the wait bit in the I/O old
PSW. It then loads that PSW. This causes control to be returned to the
DMSIOW function routine, which, in turn, returns control to the program
that called it to wait for the interruption.

Terminal Interrupts

Terminal input/output interruptions are handled by the DMSCIT module.
All interruptions other than those containing device end, channel end,
attention, or unit exception status are ignored. If device end status is
present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been queued via the ST AX macro. The
attention exit with the highest priority is given control at each attention
until the queue is exhausted, then a read is issued.

Chapter 3. Handling Interrupts in CMS 11

Device end status indicates that the last I/O operation has been completed.
If the last I/O operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the last I/O operation was a
normal read, the buffer is put on the finished read list and the next
operation is started.

If the read is caused by an attention interrupt, the line is first checked to
see if it is an immediate command (user-defined or built-in). If it is a
user-defined immediate command, control is passed to a user specified exit,
if one exists. Upon completion, the exit returns to DMSCIT. If it is a
built-in immediate command (HX, for example), appropriate processing is
performed by DMSCIT.

Unit exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST = NO, in which case unit exception is
treated as device end.

Reader/Punch/Printer !nterrupts

Interruptions from these devices are handled by the routines that actually
issue the corresponding I/O operations. When an interruption from any of
these devices occurs, control passes to DMSITI. Then DMSITI passes
control to DMSIOW, which returns control to the routine that issued the
I/O operation. This routine can then analyze the cause of the interruption.

User-Controlled Device Interrupis

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DMSITI passes control to any user-written interrupt processing
routine specified in the user device table. Otherwise, the processing
program regains control directly.

To handle unsolicited device interrupts, you may specify the EXIT
parameter for the OPEN request of the CONSOLE macro instruction. If
you specify this parameter, do NOT define an interruption routine via the
HNDINT macro for the same device. Use of the CONSOLE macro with the
use of HNDINT should be mutually exclusive. If for some reason there is
both a CONSOLE EXIT and an HNDINT routine for the same device, the
HNDINT routine overrides a CONSOLE EXIT only in the case of an
unsolicited interrupt.

The console facility supports multiple applications for a single device
whereas HNDINT only allows one application to handle all interrupts from
a specific device. Because it is difficult to tell what application is doing I/O
last, the console facility helps CMS keep track of what application is doing
I/O or what application handled interrupts last.

12 VM/SP eMS for System Programming

,~.~-.- .•... ---------.. ------------.-.--.-----------.-. __ ._--------_._-------_. __ .. _---------------_ _-- .- .]
I

The CONSOLE macro supersedes an HNDINT routine when the interrupt is
solicited. In most cases, a CONSOLE WAIT and CONSOLE READ can be
issued instead of coding an HNDINT routine to handle all interrupts.
Therefore, if you want to perform I/O to a 3270 device, you should use the
CONSOLE macro instead of the HNDINT macro.

Program Interrupts

The program interruption handler, DMSITP, receives control when a
program interruption occurs. When DMSITP gets control, it stores the
program old PSW and the contents of the registers 14, 15, 0, 1, and 2 into
the program interruption element (PIE). (The routine that handles the
SPIE macro instruction has already placed the address of the program
interruption control area (PICA) into PIE.) DMSITP then determines
whether or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITP passes control
to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE macro
instruction, DMSITP picks up the exit routine address from the PICA and
passes control to the exit routine. Upon return from the exit routine,
DMSITP returns to the interrupted program by loading the original
program check old PSW. The address field of the PSW was modified by a
SPIE exit routine in the PIE.

External Interrupts

An external interruption causes control to be passed to the external
interrupt handler DMSITE. If CMS IUCV support is active in the virtual
machine and an IUCV external interrupt occurs, control is passed to the
user exit specified on the HNDIUCV or CMSIUCV macro. If the user has
issued the HNDEXT macro to trap external interrupts, DMSITE passes
control to the user's exit routine.

If the interrupt was caused by the timer, DMSITE resets the timer and
types the BLIP character at the terminal. The standard BLIP timer setting
is two seconds, and the standard BLIP character is uppercase, followed by
the lowercase (it moves the typeball without printing). Otherwise, control
is passed to the DEBUG routine.

Machine Check Interrupts

Hard machine check interruptions on the real processor are not reflected to
a CMS virtual user by CPo A message prints on the console indicating the
failure. The user is then disabled and must IPL CMS again to continue.

Chapter 3. Handling Interrupts in CMS 13

14 VM/SP OMS for System Programming

,----------
L ©-~~~~r ri!I' (~§"lnJJ,1 @(~Jr~~'
._----

The most important thing to remember about eMS, from a debugging
standpoint, is that it is a one-user system. The supervisor manages only
one user and keeps track of only one user's file and storage chains. Thus,
everything in a dump of a particular machine relates only to that virtual
machine's activity.

Structure of Cf.1S Stor~ge

Figures 1, 2, and 3 on pages 18, 19, and 20 describe how CMS uses its
virtual storage. The pointers indicated (MAINSTRT, MAINHIGH, and
FREELOWE) are all found in NUCON (the nucleus constant area).

The sections of CMS storage have the following uses:

o DMSNUC (X'OOOOO' to ANUCEND). This is the nucleus constant area.
It contains system control blocks, pointers, flags, and other data
updated by the various system routines.

.. Low-Storage DMSFREE User Free Storage Area (ANUCEND to
X'OEOOO'). This area is a free storage area where user requests to
DMSFREE are allocated.

o Transient Program Area (X'OEOOO' to X'lOOOO'). Since it is not
essential to keep all nucleus functions resident in storage all the time,
some of them are made "transient." This means that when nucleus
functions are needed, they are loaded from the disk into the transient
program area. Such programs may not be longer than two pages
because that is the size of the transient area. (A page is 4096 bytes of
virtual storage.) All transient routines must be serially reusable since
they are not read in each time they are needed. See "User and
Transient Program Areas" on page 23 for more details on the transient
program area.

• Low-Storage DMSFREE Nucleus Free Storage Area (X'lOOOO' to
X'20000'). This area is a free storage area where nucleus requests to
DMSFREE are allocated. The top part of this area contains the dummy
hyperblocks for the S- and Y-disk. Each block is 48 bytes long. This
area may be followed by the file status tables for the S2 filemode files of
the system disk.

If there is enough room, the FREETAB table also occupies this area,
just below the file status tables, if they are there. Each entry in the

Chapter 4. Using Storage 15

L

FREETAB table is one byte long. Each byte represents one page (4K or
4096 bytes) of defined storage.

• User Program Area (X'20000' to Loader Tables or CMS Nucleus,
whichever has the lower value). User programs are loaded into this
area by the LOAD command for text decks or by the LOADMOD
command for modules. Storage allocated by means of the GETMAIN
macro instruction is taken from this area, starting from the high
address of the user program. In addition, this storage area can be
allocated from the top down by DMSFREE, if there is not enough
storage available in the low DMSFREE storage area. Thus, the usable
size of the user program area is reduced by the amount of free storage
that has been allocated from it by DMSFREE. See "User and Transient
Program Areas" on page 23 for details on the user program area.

o Loader Tables (Top pages of storage). The top of storage is occupied
by the loader tables, which are required by the CMS loader. These
tables indicate which modules are currently loaded in the user program
area (and the transient program area after a LOAD command). The size
of the loader tables can be varied by the SET LDRTBLS command.
However, to successfully change the size of the loader tables, the SET
LDRTBLS command should be issued immediately after IPL. If SET
LDRTBLS is not issued immediately, high storage may be fragmented.

G CMS Nucleus (NUCALPHA to NUCOMEGA). The CMS nucleus
contains the reentrant code for the eMS nucleus routines and the
system S-STAT and Y-STAT. If there is not sufficient room to contain
the S-STAT in this area, it is placed in low DMSFREE nucleus storage.
If there is not sufficient room to contain the Y-STAT in this area, the
Y-disk is accessed using the ACCESS command.

If the size of the user's virtual machine is defined below the end of the CMS
nucleus (refer to label NUCSIGMA in Figure 1 on page 18), it is not
possible to IPL by device name. You cannot IPL by device name because
the CMS nucleus is too large to be loaded into the user's virtual storage.
Therefore, the user can only IPL by system name (such as, IPL CMS). The
loader table is placed immediately below the CMS nucleus.

On the other hand, if the size of the user's virtual machine is defined above
the ending location of the CMS nucleus (refer to Figure 2 on page 19 and
Figure 3 on page 20), the user may IPL by either device name or system
name.

IPLing by device name:

The S-STAT, Y-STAT, and the loader table are placed above the CMS
nucleus. If there is not enough room to contain the' S-ST AT above the
CMS nucleus (NUCSIGMA), it is placed in low storage. Likewise, if
there is not sufficient room for the loader table above the CMS nucleus
(NUCSIGMA), the loader table is placed below the nucleus. Any
leftover free space above the nucleus is placed on the high DMSFREE
chain.

16 VMjSP eMS for System Programming

r--------------------
(c~tfJ8 8·~@G'8[JG

-- ---]

IPLing by system name:

The shared copy of the S-STAT, Y-STAT, and nucleus is used~ If there
is sufficient room, the loader table is placed above the S-ST AT and
Y-STAT (NUCOMEGA). If there is insufficient room to place the loader
table above the S- and Y-STAT, the loader table is placed below the
nucleus. Any leftover free space above the S- and Y-STAT
(NUCOMEGA) is placed on the high DMSFREE chain.

Chapter 4. Using Storage 17

Virtual Storage

I NUCOMEGA I
S-STAT and V-STAT

(Shard)

NUCSIGMA

-- CMS Nucleus
(Shared) _ ...

NUCALPHA

OS Simulation, EXEC, EXEC 2, AEXX, XEDIT, CMS
interrupt handlers, file system, free storage
management, loader, device I/O, debug.

Storage Key" X'O'

End of Storage

VMSIZE ~-------------------------------------, System Loader Table
(Size Determined by SET LDRTBLS command)

Storage Key = X'F'

DMSFAEE requests when no more low'storage is available ·1
Storllge Key = X'E' or X'F' . \ "

FAEELOWE _ [- ~se:;,o:on:f ~er-;o;:m :re:- - -- ~~. "

-~ -~

Storage Key = X'E' ~'ser
MAINHIGH - - - - - - - - - - - -- -- - Proi}ra'm

MAINSTAT

X '20000'

X'l0000'

X'EOOO'

I ANUCEND

X'O'

GETMAIN requests

Storllge Key .. X'E' ----------------
The User's Progrllm

(Program is locllted viII the LOAD command)

Storage Key = X'E'

Low Storage DMSFREE Nucleus Free Storage I
Area. The upper part of this area may contain the
S-STAT followed by the FREETAB, If there Is
enough room,

Storage Key = X'F' .•

Transient Program Area

Storage Key = X'E'

Low Storage DMSFREE User Free 5torllge Area

$torllge Key .. X'E'

DMSNUC

System Control Blocks, flags constants, and pointers

Storage Key = X'F' •

Area·"

• The page starting at DMSNUCU containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage
has a Storage Key'" X'E'.

Control Blocks in Free Storage

DECB II LDAST II AFT II ADT

I CMSSAVE II CMSCB II FSTB I

Figure 1. eMS Storage Map 1. CMS virtual storage usage when the eMS nucleus is larger than the
user's virtual storage. In this case, you must IPL by system name (VMSIZE is less than
NUCSIGMA). The arrows indicate that MAINHIGH is extended upward and FREELOWE is
extended downward.

18 VM/SP CMS for System Programming

Virtual Storage
\ NUCOMEGA (VM SIZE) S-STATa~d V-STAT

(Shared - if IPL'i by system name)

NUCSIGMA

NUCALPHA

FREELOWE

MAINHIGH

MAINSTRT

X '20000'

X'l0000'

X'EOOO'

ANUCEND

X'O'

.1-

CMS Nucleus
(Shared - if IPL'd by system name)

OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file system, free storage
management, loader, device I/O, debug.

Storage Key - X'O'

System Loader Table
(Size Determined by SET LDRTBLS command)

....

Storage Key .. X'F'

DMSFREE requests when no more low storage is available

Storage Key .. X'E' or X'F' .. r- ::;-pO::;u:,:':,::.~ ---:1' ,
-~ - '

USe'r
Storage Key" X'E' PrOgram

~ ------------------- Area \,
GETMAIN requests

Storage Key = X'E'

~-------------------. The User's Program
(Program is located via the LOAD command)

1,:///
Storage Key" X'E'

'Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT followed by the FREETAB.lf there Is
enough room.

Storage Key = X'F'

Transient Program Area

Storage Key .. X'E'

Low Storage DMSFREE User Free Storage Are'a

Storage Key" X'E'

DMSNUC
System Control Blocks, flags, constants, and pointers

Storage Key .. X'F' •

• The page starting at DMSNUCU containing OPSECT. SUBSECT.
DBGSECT. DMSERL. TSOBLKS. USERSECT. and free storage
has a Storage Key • X'E'.

r- Control Blocks in Free Storaae -

I DECB II LDRST II AFT II ADT I
ICMSSAVE II CMSCB II FSTB I

Figure 2. eMS Storage Map 2. Virtual storage usage when the user's virtual storage is equal to the eMS
nucleus. The user may IPL by system name or device. In addition, this figure shows the case
where there is insufficient room to place the loader table above S-STAT and Y-STAT. The arrows
indicate that MAINHIGH is extended upward and FREELOWE is extended downward.

Chapter 4. Using Storage 19

L " " .. , .. "._ ___________________ . _____ _._ __ __ _. __ .. ____ .. ___ -=-______ .. ________________ 1

VM SIZE

I NUCOMEGA

NUCSIGMA

NUCALPHA

FREELOWE

MAINHIGH

MAINSTRT

X '20000'

X'l0000'

X'EOOO'

ANUCEND

X'O'

Virtual Storage

System Loader Table
(Size Determined by SET LDRTBLS command)

~ _____________ ~~~~~2:

.-

.

DMSFREE requests

Storage Key" X'E' or X'F'

I
S-STAT and Y -STAT

(Shared - if IPL'd by system name) ...

J
CMS Nucleus

(Shared - if IPL'd by system name)

OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file system, free storage
management, loader, device I/O, debug.

.1.0

Storage Key .. X'O'

DMSFREE requests when no more low storage is available

__________ ~t~a2! ~y..:X":;'.!!r!'!'

Unused portion of User Program Area

--
Storage Key" X 'E' ---------------------GETMAIN requests

Storage Key = X'E' --------------------The User's Program
(Program is located via the LOAD command)

Storage Key = X'E'

Low Storaga DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT followed by the FREETAB,lf there Is
enough room.

Storage Key = X'F'

Transient Program Area

Storage Key = X'E'

Low Storage DMSFREE User Free Storage Area

Storage Key = X 'E'

DMSNUC
System Control Blocks, flags, constants, and pointers

Storage Key = X'F' •

User
Progr;::m
Area

• The page starting at DMSNUCU containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage
has a Storage Key = X'E',

Control Blocks in Free Storage

DECB II LDRST II AFT II ADT

ICMSSAVEII CMSCB II FSTB I

Figure 3. eMS Storage Map 3. eMS virtual storage usage when the user's virtual storage is larger than
the eMS nucleus. The user may IPL by system name or device. In addition, this figure shows the
case where there is sufficient room to place the loader table above S-STAT and Y-STAT. The
arrows indicate that MAINHIGH is extended upward and FREELOWE is extended downward.

20 VMjSP eMS for System Programming

/'

Structure of DMSNUC

USERSECT (User Area)

DEVTAB (Device Table)

DMSNUC is the portion of storage in a CMS virtual machine that contains
system control blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic references. This means
that an update or modification to CMS, which changes a CSECT in
DMSNUC, does not automatically force all CMS modules to be recompiled.
Only those modules that refer to the area that was redefined must be
recompiled.

The USERSECT CSECT defines space that is not used by CMS. A
modification or update to CMS can use the 18 fullwords defined for
USERSECT. There is a pointer (AUSER) in the NUCON area to the user
space.

The DEVTAB CSECT is a table describing the devices available for the
CMS system. The table contains the following entries·

0 1 console
0 26 disks
0 1 reader
0 1 punch
0 1 printer
0 16 tapes
0 1 dummy

You can change some existing entries in DEVTAB. Each device table entry
contains the following information:

o Virtual device address
o Device flags
o Device types
o Symbol device name
o Address of the interrupt processing routine (for the console).

The virtual address of the console is defined at logon time. The ACCESS
command can dynamically alter the virtual address of the user disks in
DEVTAB. The virtual address of a tape can be reassigned to any of the
addresses given in DEVTAB (TAPO - TAPF) by using CMS commands
and/or macros. Changing the virtual addresses of the reader, printer, or
punch in DEVTAB has no effect. Figure 4 describes the devices supported
by eMS.

Chapter 4. Using Storage 21

C~v~8 8~fJ)l/ogG
L -=:-:-........................ ____ ._._._. ____ ._ .. _____ ... ___ . __ ._~.===_:===~.::_=-::-:-~~~.:::=~._--~~::~: ... ~:~.-~:.- .. ~.::-.. _:_.:.~~--.--.~:_:~-~::J

Virtual Virtual Symbolic
IEI'll: Device Type Acldrcnn\": Nnn1.c (defuult) Device Une

3210, 3215, 1052, cuu! CON1 System console
3066, 3270

2314, 2319, 3310, 190 DSKO CMS System disk (read-only)
3330, 3340, 3350, 1912 DSK1 Primary disk (user files)
3370, 3375, 3380 cuu DSK2 Minidisk (user files)

cuu DSK3 Minidisk (user files)
192 DSK4 Minidisk (user files)
cuu DSK5 Minidisk (user files)
cuu DSK6 Minidisk (user files)
cuu DSK7 Minidisk (user files)
19E DSK8 Minidisk (user files)
cuu DSK9 Minidisk (user files)
cuu DSKH Minidisk (user files)
cuu DSKI Minidisk (user files)
cuu DSKJ Minidisk (user files)
cuu DSKK Minidisk (user files)
cuu DSKL Minidisk (user files)
cuu DSKM Minidisk (user files)
cuu DSKN Minidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKP Minidisk (user files)
cuu DSKQ Minidisk (user files)
cuu DSKR Minidisk (user files)
cuu DSKT Minidisk (user files)
cuu DSKU Minidisk (user files)
cuu DSKV Minidisk (user files)
cuu DSKW Minidisk (user files)
cuu DSKX Minidisk (user files)

2540, 2501, 3505 OOC RDR1 Virtual reader

2540, 3525 OOD PCH1 Virtual punch

1403, 1443, 3203, OOE PRN1 Line printer
3211, 3262, 3800,
4245, 4248, 3289-4

2401, 2402, 2403, 180 - 187, TAPO - TAP7, Tape drives
2415, 2420, 3410, 288 - 28F TAP8-TAPF
3411, 3420, 3430,
3480, 8809, 3422

Figure 4. Devices Supported by a eMS Virtual Machine

* The device addresses shown are preas sembled into the CMS resident
device table. These need only be modified and a new device table made
resident to change the addresses.

1 The virtual address of the system console may be any valid multiplexer
address.

2 191 is the default user-accessed A-disk unless it is dynamically changed
by an ACCESS at CMS initial program load (IPL).

22 VM/SP eMS for System Programming

L __ . __ ._._

User and Transient Program Areas

Two areas hold programs that are loaded from disk. These areas are called
the user program area and the transient program area, as discussed on page
15. (See Figures 1, 2, and 3 on pages 18, 19, and 20 for a description of CMS
storage use.) A summary of CMS modules and their attributes, including
whether they reside in the user program area or the transient area, is
contained in the VM/ SP CMS Command Reference.

The user program area starts at location X'20000' and extends upward to
the loader tables. Generally, all user programs and certain system
commands are executed in the user program area. Because only one
program can be executing in the user program area at anyone time, it is
impossible (without unpredictable results) for one program executing in the
user program area to invoke, by means of SYC 202, a module that will also
be executed in the user program area.

The transient program area is two pages long, extending from location
X'EOOO' to location X'FFFF'. It provides an area for system commands that
may also be invoked from the user program area by means of an SYC 202
call. When a transient module is called by an SYC, it is normally executed
with the PSW system mask disabled for I/O and external interrupts.

A program executing in the transient program area may not invoke another
program intended to execute in the transient program area. Thus, a
program executing in the transient program area may not invoke the TYPE
command.

DMSITS starts the programs to be executed in the user program area
enabled for all interrupts, but DMSITS starts the programs to be executed
in the transient program area disabled for all interrupts. The individual
programs may have to use the SSM (Set System Mask) instruction to
change the current status of its system mask.

Managing eMS Storage

You can allocate free storage by issuing the GETMAIN or DMSFREE
macros.

Storage allocated by the GETMAIN macro is taken from the user program
area, starting after the high address of the user program. Storage allocated
by the DMSFREE macro can be taken from several areas. First, DMSFREE
requests are allocated from the low address free storage area. Otherwise,
DMSFREE requests are satisfied from the unused portion of the user
program area.

There are two types of DMSFREE requests for free storage: requests for
USER storage and NUCLEUS storage, specified in the TYPE parameter of
the DMSFREE macro. These two types of storage are kept in separate 4K
pages. It is possible for storage of one type to be available in low storage,
while no storage of the other type is available.

Chapter 4. Using Storage 23

C-. ------------.-------'--:._':::--~-:-.:_:-~=.~-'------ .. -,--------------.-,._-------,-----.---,--------.-------~~-.~~::::_::=_~-~.

GETMAIN Free Storage Management

The STRINIT Macro

All GETMAIN storage is allocated in the user program area, starting after
the end of the user's actual program. Allocation begins at the location
pointed to by the NUCON pointer MAINSTRT. The location MAINHIGH
in NUCON points to the highest address of GETMAIN storage.

The STRINIT function initializes pointers used by CMS for simulation of
OS GETMAIN/FREEMAIN storage management. In the usual CMS
environment, that is, when execution is initiated by the LOAD and START
commands, CMS calls the STRINIT macro as part of the LOAD preparation
for execution. In an OS environment established by CMS, such as OSRUN,
CMS' executes the STRINIT function. This should not be done by the user
program. In any case, the STRINIT macro should be issued only once in
the OS environment, preceding the initial GETMAIN request. In addition,
the STRINIT function makes any pages that were allocated by GETMAIN
available to be released by the CMS page manager.

The format of the STRINIT macro is:

[label] STRINIT [TYPCALL = {~XrR} 1

where:

label
is any valid assembler language label.

TYPCALL ={SVC }
BALR

indicates how control is passed to DMSSTG, the routine that
processes the STRINIT macro. Since DMSSTG is a nucleus-resident
routine, other nucleus-resident routines can branch directly to it
(TYPCALL = BALR). Routines that are not nucleus-resident must use
SVC linkage (TYPCALL = SVC) . .If no operands are specified, the
default is TYPCALL = SVC.

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH
are initialized to the end of the user's program in the user program area.
The end of the user's program is the upper boundary of the load module
created by the CMS LOAD and INCLUDE commands. This upper boundary
value is stored in the NUCON field LOCCNT. When the user's program
begins execution, the STRINIT macro is executed and the LOCCNT value is
used to initialize MAINSTRT and MAINHIGH. During execution of the
user's program, the LOCCNT field is used in CMS to pass starting and
ending addresses of files loaded by OS simulation (see Notes below). As
storage is allocated from the user program area to satisfy GETMAIN

24 VM/SP eMS for Sys'tem Programming

,1':,[\ J~.)~ ~''')':~'II)LJ~ 'J' 'J' "\
" .• 'J LJ.J I,.. ' .. _" _ l._ ~_ '-..J

L....:...--.:_ ... _ ... :~ __ .. _._ ... ___ . ____ . _____ . ____ .. ~~ __ ~ __ ~ ____ ._. __ ~ ___ .. _.~_ _. __ .__, ' , _ _ .. _ __ _ _ ' ,: ____ ... ____ :~_J

requests, the MAINHIGH pointer is adjusted upward. Such adjustments
are always in multiples of doublewords, so that this pointer is always on a
double word boundary. As the allocated storage is returned, the
MAINHIGH pointer is adjusted downward.

The pointer MAINHIGH can never be higher than FREELOWE.
FREELOWE is the pointer to the lowest address of DMSFREE storage
allocated in the user program area. If a GETMAIN request cannot be
satisfied without extending MAINHIGH above FREELOWE, GETMAIN
takes an error exit, indicating that insufficient storage is available to
satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of
storage that are not allocated but are available for allocation by a
GETMAIN instruction. These blocks are chained together, and the first
block is pointed to by the NUCON location MAINLIST. Refer to Figures 1,
2, and 3 on pages 18, 19, and 20 for a description of CMS virtual storage
usage.

Notes:

1. Reissuing the STRINIT macro during execution of an OS program, or
issuing the STRINIT macro without having done a CMS LOAD is not
advised. The value in LOCCNT has not been appropriately set. This
may cause a storage management failure.

2. A high level language may issue a STRINIT. In this case, a user should
not issue an additional STRINIT.

The format of an element on the GETMAIN free element chain is as
follows:

0(0)

4(4)

FREPTR -- pointer to next free
element in the chain, or a
if there is no next element

FRELEN -- length, in bytes, of
this element

Remainder of this free element

The maximum amount of storage that can be obtained via the GETMAIN
macro is determined by one of the following formulas:

VMSIZE < 512K:

(largest block of the user program area available) - 10 pages

VMSIZE > = 512K:

Chapter 4. Using Storage 25

r,-';,.rVJD nr'r:-")r"1n(-~('\
\:.::;7Lv ~) I:.~)~c.lu Cj~J'-;

Releasing Storage

(largest block of the user program area available) - (12 pages + 2
additional pages for each 256K of virtual storage over 512K)

Storage allocated by the GETMAIN macro instruction may be released in
any of the following ways:

1. A specific block of such storage may be released by means of the
FREE MAIN macro instruction.

2. Whenever any user routine or eMS command abends (so that the
routine DMSABN is entered) and the abend recovery facility of the
system is invoked, all GETMAIN storage pointers are reset.

3. Issuing a STRINIT macro releases all allocated GETMAIN storage.

26 VM/SP eMS for System Programming

(~L~;]8 8'~«)[j'CJ~J(J
~---.. --.. -- .. --.-.--- .. - . ----. -. --------.--~ .. ------ -----~ --.--~ .. -.. :---.-----~.- .. ,.--:.....-~ .. - .. -'" ~=--==~-=::~~~~:..:.:..:..=-:...:..:=-:..:...:.:--~~~--... -"'-~

I DMSFRE Free Storage Management

The DMSFREE Macro

The DMSFREE macro allocates CMS free storage. The format of the
DMSFREE macro is:

[label] DMSFREE DWORDS= { n } [,MIN = { (~) }] (0)

[,TYPE = {USER }]
NUCLEUS

[,ERR= {la~dr}]

[,AREA = {~?ci1}]

[,TYPCALL= {~x~R}l

where:

label
is any valid assembler language label.

DWORDS={ n}
(0)

is the number of double words of free storage requested. DWORDS = n
specifies the number of doublewords directly and DWORDS = (0)
indicates that register 0 contains the number of doublewords
requested. Do not specify any register other than register O. The
register number for register 0 cannot be expressed as an equated
symbol.

CMS returns, in register 0, the number of doublewords allocated and,
in register 1, the address of the first byte of allocated storage.

MIN= {(~)}
indicates a variable request for free storage. If the exact number of
double words indicated by DWORDS operand is not available, then the
largest block of storage greater than or equal to the minimum is
requested. MIN = n specifies the minimum number of doublewordsof
free storage directly. MIN = (1) indicates that the minimum is in
register 1. Do not specify any register other than register 1. The

Chapter 4. Using Storage 27

C~JJ~) 8~C)r8[jG
r--:- .

actual amount of free storage allocated is returned to the requestor by
general register O.

TYPE = {" USER "}
"" NUCLEUS

indicates the type of CMS storage requested: USER or NUCLEUS

ERR = {~addr}

is the return address if any error occurs. laddr is any address that
can be referred to in an LA (load address) instruction. The error
return is taken if there is a macro coding error or if there is not
enough free storage available to fill the request. If the asterisk (*) is
specified for the return address, the error return is the same as a
normal return. There is no default for this operand. If it is omitted
and an error occurs, the system abends.

AREA= "{LOW}
HIGH

indicates the area of CMS free storage requested. LOW indicates any
free storage below the user areas, depending on the storage requested.
HIGH indicates DMSFREE storage above the user area. If AREA is
not specified, storage is allocated wherever it is available.

TYPCALL ={ SVC }
BALR

indicates how control is passed to DMSFREE. Since DMSFREE is a
nucleus-resident routine, other nucleus-resident routines can branch
directly to it (TYPCALL = BALR). Routines that are not
nucleus-resident must use SVC linkage (TYPCALL = SVC).

The FREELOWE pointer in NUCON indicates the amount of storage that
DMSFREE has allocated from the high portion of the user program area.
These pointers are initialized to the beginning of the loader tables.

The pointer FREELOWE is the pointer to the lowest address of DMSFREE
storage in the user program area. As storage is allocated from the user
program area to satisfy DMSFREErequests, the pointer FREELOWE is
adjusted downward. As the allocated storage is returned, this pointer is
adjusted upward. Such adjustments are always in multiples of 4K bytes so
the pointer is always on a 4K boundary.

The pointer FREEL OWE can never be lower than MAINHIGH.
MAIN HIGH is the pointer to the highest address of GETMAIN storage. If
a DMSFREE request cannot be satisfied without extending FREELOWE
below MAINHIGH, DMSFREE takes an error exit, indicating that
insufficient storage is available to satisfy the request. Figures 1, 2, and 3
on pages 18, 19, and 20 show the relationship of these storage areas.

The FREETAB free storage table is usually kept in nucleus low FREE
storage. However, the FREETAB may be located at the top of the user

28 VM/SP eMS for System Programming

«~~lfJS ~~'~O[/8~G
- -]

program area. This table contains a code indicating the use of that page of
virtual storage. The codes in this table are as follows:

USERCODE (X'Ol')

NUCCODE (X'02')

TRNCODE (X'03')

USARCODE (X'04')

The page is assigned to user storage.

The page is assigned to nucleus storage.

The page is part of the transient program area.

The page is an unassigned page in the user
program area.

SYSCODE (X'05') The page is none of the above. The page is
assigned to system storage, system code, or the
loader tables.

Other DMSFREE storage pointers are maintained in the DMSFRT CSECT,
in NUCON. The four chain header blocks are the most important fields in
DMSFRT. The four chains of unallocated elements are:

o The low storage nucleus chain
o The low storage user chain
o The high storage nucleus chain
o The high storage user chain

For each of these chains of unallocated elements, there is a control block
consisting of four words with the following format:

0(0)
POINTER -- pointer to the first

FBD (free block descriptor)
in a cache of FBDs used to
describe the first "nll free
blocks of storage for the
particular chain.

NUM -- the number of elements on
4(4) the chain.

MAX -- a value equal to or
rreater than the size of the
argest element on the chain.

8(8)

12(C) FLAGS- SKEY- TCODE- Unused
Flag Storage FREETAB
byte key code

where:

POINTER
points to the first FBD (file block descriptor) in a cache of FBDs used
to describe the first "n" free blocks of storage for the particular chain.
"n" is 10 for the high user chain, 9 for the high nucleus chain, 6 for
the low user chain, and 6 for the low nucleus chain.

Chapter 4. Using Storage 29

NUM
contains the number of elements on this chain of free elements. If
there are no elements on this free chain, this field contains all zeroes.

MAX
is used to avoid searches that will fail. It contains a number not
exceeding the size, in bytes, of the largest element on the free chain.
Thus, a search for an element of a given size is not made if that size
exceeds the MAX field. However, this number may actually be larger
than the size of the largest free element on the chain.

FLAGS
The following flags are used:

FLCLN (X'80') -- Clean-up flag. This flag is set if the chain must be
updated. This is necessary in the following circumstances:

o If one of the two high-storage chains contains a 4K page that is
pointed to by FREELOWE, that page can be removed from the
chain and FREELOWE can be increased.

o All completely unallocated 4K pages are kept on the user chain,
by convention. Thus, if one of the nucleus chains (low-storage or
high-storage) contains a full page, this page must be transferred to
the corresponding user chain.

FLCLB (X'40') -- Destroyed flag. Set if the chain has been destroyed.

FLHC (X'20') -- High-storage chain. Set for both the nucleus and user
high-storage chains.

FLUN (X'lO') -- Nucleus chain. Set for both the low-storage and
high-storage chains.

FLP A (X'08') -- Page available. Set if there is a full 4K page
available on the chain. This flag may be set even if there is no such
page available.

SKEY
contains the one-byte storage key assigned to storage on this chain.

TCODE
contains the one-byte FREETAB table code for storage on this chain.

There are four caches of FBDs, one for each of the chains. The FBDs are
chained together at initialization time from the head pointers found in the
DMSFRT CSECT described above.

Each of the FBDs in the cache has the following format:

30 VM/SP eMS for System Programming

0(0)

4(4)

8(8)

_ .J

~------- 4 bytes

POINTER -- pointer to the next FBD in the
chain unless it is the last FBD in the
cache in which case it points to the
next block of free storage in the chain
or is zero.

SIZE -- size of the free block in bytes

FBDFREE -- pointer to the free
that this FBD is describing.

block

The FBDs in the cache always remain chained together, and when they do
not describe a free block, the fields SIZE and FBDFREE are zero. When
the cache is full, the forward pointer POINTER in the last FBD in the
cache points to the next free block that contains the following fields:

<If-------- 4 byte s

0(0) POINTER -- pointer to the next element
in the free chain or is zero

4(4) SIZE -- size of this free element, in
bytes

Remainder of this free element

As indicated in the illustration above, the POINTER field points to the next
element in the chain, or contains the value zero if there is rio next element.
The SIZE field contains the size of this element, in bytes.

The eight bytes before the first physical FBD in each cache contains eight
bytes of information about the cache and has the following fields:

0(0)

4(4)

8(8)

<J<I-------- 4 byte s

CHILAST -- last FBD in the cache of free
~oi nters. The forward poi nter in thi s

BD points to the first POINTER off the
cache or is zero if there are none.

CHINUM -- the number of FBDs in the cache

CHI FLAG -- a flag field used by storage
management.

All elements within a given chain are chained together in order of
descending storage address. This is done for two reasons:

1. Because the allocation search is satisfied by the first free element that
is large enough, the allocated elements are grouped together at the top
of the storage area, and prevent storage fragmentation. This is

Chapter 4. Using Storage 31

G~JJ8 8~(Q)~~80G
L __ ._ .. _____ .. _________________ :==~:=:~=: __ ..: _______ . ______ .. ________ .. _. _______ .. _ ___ ... ___ ._. ___ . ___ =.:===.=~: ..

• h_]

particularly important for high-storage free storage allocations, because
it is desirable to keep FREELOWE as high as possible.

2. If free storage does become somewhat fragmented, the search causes as
few page faults as possible.

As a matter of convention, completely nonallocated 4K pages in high
storage are kept on the user free chain rather than the nucleus free chain.
This is because requests for large blocks of storage are made, most of the
time, from user storage rather than from nucleus storage. Nucleus requests
need to break up a full page less frequently than user requests.

Allocating User Free Storage

When DMSFREE with TYPE = USER (the default) is called, the following
steps are taken to try to satisfy the request. As soon as one of the following
steps succeeds, the user free storage allocation processing terminates and
the CMS page manager is notified of any full or partial pages that have
been allocated.

1. Search the low-storage user chain for a block of the required size.

2. Search the high-storage user chain for a block of the required size.

3. Extend high-storage user storage downward into the user program area,
modifying FREELOWE in the process.

4. For fixed requests, there is nothing more to try. For variable requests,
DMSFREE puts all available storage in the user program area onto the
high-storage user chain, and then allocates the largest block available
on either the high-storage user chain or the low-storage user chain.
The allocated block is not satisfactory unless it is larger than the
minimum requested size.

Allocating Nucleus Free Storage

When DMSFREE with TYPE = NUCLEUS is called, the following steps are
taken to satisfy the request. As soon as one of the following steps succeeds,
user free storage allocation processing terminates and the CMS page
manager is notified of any full or partial pages that have been allocated.

1. Search the low-storage nucleus chain for a block of the required size.

2. Search the high-storage nucleus chain for a block of the required size.

3. Get free pages from the high-storage user chain, if they are available,
and put them on the high-storage nucleus chain.

4. Extend high-storage nucleus storage downward into the user-program
area, modifying FREELOWE in the process.

5. For fixed requests, there is nothing more to try. For variable requests,
DMSFREE puts all available pages from the high-storage user chain

32 VMjSP eMS for System Programming

/'

Releasing Storage

The DMSFRET Macro

and the user program area onto the high-storage nucleus chain, and
allocates the largest block available on either the low-storage nucleus
chain or the high-storage nucleus chain.

Storage allocated by the DMSFREE macro instruction may be released in
either of the following ways:

1. A specific block of such storage may be released by means of the
DMSFRET macro instruction.

2. Whenever any user routine or CMS command abnormally terminates (so
that the routine DMSABN is entered) and the abend recovery facility of
the system is invoked, all DMSFREE storage with TYPE = USER is
released automatically.

Except in the case of abend recovery, storage allocated by the DMSFREE
macro is never released automatically by the system. It should always be
released explicitly by means of the DMSFREr macro instruction.
Whenever a completely unused 4K page becomes available, it is made
eligible for release by a call to the CMS page manager.

The format of the DMSFRET macro is:

[label] DMSFRET DWORDS= { n } ,LOC = {laddr}
(0) (1)

[,ERR = {1~dr}J [,TYPCALL= {~X£R}J

where:

label
is any valid assembler language label.

DWORDS={ n }
(0)

is the number of doublewords of storage to be released. DWORDS = n
specifies the number of double words directly. DWORDS = (0) indicates
that register 0 contains the number of double words being released. Do
not specify any register other than register O. The register number for
register 0 cannot be expressed as an equated symbol.

Chapter 4. Using Storage 33

r·--·'··· -.. -------- ,_._- .. -----_.- --.......... ,-... -------....... - .. --- -.-,- ... -.. -.-.--_ -........ ' ., ..

eMS Page Management

LOC = { laddr }
, (1)

is the address of the block of storage being released. " laddr is any
address that can be referred to in an LA (load address) instruction.
LOC = laddr specifies the address directly. LOC = (1) indicates the
address is in register 1. Do not specify any register other than
register 1.

ERR= {~addr}

is the return address if any error occurs. laddr is any address that
can be referred to by an LA (load address) instruction. The error
return is taken if there is a macro coding error or if there is a problem
returning the storage. If the asterisk (*) is specified, the error return
address is the same as a normal return address. There is no default
for this operand. If it is omitted and an error occurs, the system
abends.

TYPCALL ={ SVC }
BALR'

indicates how control is passed to DMSFRET. Since DMSFRET is a
nucleus-resident routine, other nucleus-resident routines can branch
directly to it (TYPCALL = BALR). Routines that are not
nucleus-resident must use SVC linkage (TYPCALL = SVC).

When DMSFRET is called, the block being released is placed on the
appropriate chain. At that point,' the final update operation is performed, if
necessary, to advance FREELOWE or to move pages from the nucleus
chain to the corresponding user chain.

Similar update operations are performed, when necessary, after calls to
DMSFREE, as well. When FREELOWE is adjusted upward, the
corresponding pages are released by issuing a DIAGNOSE code X'10'
instruction to CPo The CMS page manager is notified of any completely
unallocated 4K pages.

The CMS page manager (DMSP AG) controls the release of de-allocated
storage. When the CMS page, manager is notified, of a completely
nonallocated 4K page, that page is made available for release. The page
manager holds the available pages, and when the number exceeds a
system-defined maximum, those pages are released via DIAGNOSE code
X'lO'. If storage management routines allocate any part of a 4K page being
held, that page is no longer available for release.

You can stop the release of available pages by issuing the SET RELP AGE
OFF command. The page manager continues to track pages, and when you
set RELPAGE ON, all available pages are released.

34 VM/SP eMS for System Programming

(~~J~S 8'~([)G'8fJ8
c.-=-_·~·.~·.~·~_~~~~ . .:.:~.~.:.:.::~.:.:.=_ .. :..: ____ :_~=~ .. :.:.:.:~=_~.:.=~:.:.: . .:.::=.~: . .:.:~~_:.:.._.:.:_=:-_~=::=====~~.=.:.:-=--=-==-~~=~.:.:==~~=::_===:~==-=:.::.~~~~~:=.~ ~.:~.~~.:.:~= :::..::::]

DMSFRE Service Routines

The DMSFRES Macro

The system uses the DMSFRES macro instruction to request certain free
storage management services.

The format of the DMSFRES macro is:

[label]
- -

DMSFRES INITI
INIT2
CHECK

,TYPCALL= {Svc } CI{ON
CKOFF BALR
UREC
CALOC

- -

where:

label
is any valid Assembler language label.

INITI
invokes the first free storage initialization routines to allow free
storage requests to access the system disk. Before INITI is invoked,
no free storage requests may be made. After INITI has been invoked,
free storage requests may be made. However, these are subject to the
following restraints until the second free storage management
initialization routine has been invoked:

o All requests for USER type storage are changed to requests for
NUCLEUS type storage.

o Error checking is limited before initialization is complete. In
particular, it is sometimes possible to release a block that was
never allocated.

o All requests that are satisfied in high storage must be temporary,
since all storage allocated in high storage is released when the
second free storage initialization routine is invoked.

When CP's saved system facility is used, the CMS system is saved just
after the system disk has been accessed. It is necessary for DMSFRE
to be used before the size of virtual storage is known, because the
saved system can be used on any size virtual machine. Thus, the first
initialization routine initializes DMSFRE so that limited functions
can be requested. The second initialization routine performs the
initialization necessary to allow the full functions of DMSFRE to be
exercised.

Chapter 4. Using Storage 35

L. ________ . ___ . ______ ._ ... -.-----... --.- -.----- --.. ----.--.-...... ----..... -.----- .--.. --. --.-.-- ---.. --·--'·1

INIT2
invokes the second initialization routine. This routine is invoked
after the size of virtual storage is known, and it performs initialization
necessary to allow all the functions of DMSFRE to be used. The
second initialization routine performs the following steps:

o Releases all storage that has been allocated in the high-storage
area.

o Allocates the FREETAB free storage table and the PAGE TAB
page management table. These tables each contain one byte for
each 4K page of virtual storage. Therefore, the tables cannot be
allocated until the size of virtual storage is known.

They are allocated in the nucleus low free storage area, if there is
enough room available. If not, then they are allocated in the
higher free storage area. For a 256K virtual machine, FREET AB
and P AGETAB each contain 64 bytes; for a 16 million byte
machine, they each contain 4096 bytes.

o The FREETAB and PAGETAB tables are initialized, and all
storage protection keys are initialized.

CHECK
invokes a routine that checks all free storage pointer chains for
consistency and correctness. Thus, it checks to see whether or not
any free storage pointers have been destroyed. The option can be used
at any time for system debugging.

CKON
turns on a flag that causes the CHECK routine to be invoked each
time a call is made to DMSFREE or DMSFRET. This can be useful
for debugging purposes (for example, when you wish to identify the
routine that destroyed free storage management pointers). Care
should be taken when using this option, since the CHECK routine is
coded to be thorough rather than efficient. Thus, after the CKON
option has been invoked, each call to DMSFREE or DMSFRET takes
much longer to be completed than before. This can impact the
efficiency of system functions.

CKOFF
turns off the flag that was turned on by the CKON option.

UREC
is used by DMSABN during the abend recovery process to release all
user storage.

CALOC
is used by DMSABN after the abend recovery process has been
completed. It invokes a routine that returns, in register 0, the number
of doublewords of free storage that have been allocated. This number

36 VM/SP eMS for System Programming

(~~~~8 8'~\!.~[/8tJG
~- ----~- -~ ----- ---- --~--- -------=~.:::----.. ~.=]

is used by DMSABN to determine whether or not the abend recovery
has been successful.

TYPCALL={SVC }
BALR

indicates how control is passed to DMSFRES. Since DMSFRES is a
nucleus-resident routine, other nucleus-resident routines can branch
directly to it (TYPCALL = BALR). Routines that are not
nucleus-resident must use SVC linkage (TYPCALL = SVC).

Error Codes from DMSFREE, DMSFRES, and DMSFRET

A nonzero return code upon return from DMSFREE, DMSFRES, or
DMSFRET indicates that the request could not be satisfied. Register 15
contains this return code, indicating which error occurred. The following
codes app~y to the DMSFREE, DMSFRES, and DMSFRET macros.

Code Error

1 (DMSFREE) Insufficient storage space is available t<? satisfy the
request for free storage. In the case of a variable request, even the
minimum request could not be satisfied.

2 (DMSFREE or DMSFRET) User storage pointers destroyed.

3 (DMSFREE, DMSFRET, or DMSFRES) Nucleus storage pointers
destroyed.

4 (DMSFREE) An invalid size was requested. This error exit is taken
if the requested size is not greater than zero. In the case of variable
requests, this error exit is taken if the minimum request is greater
than the maximum request. (However, the latter error is not detected
if DMSFREE is able to satisfy the maximum request.)

5 (DMSFRET) An invalid size was passed to the DMSFRET macro.
This error exit is taken if the specified length is not positive.

6 (DMSFRET) The block of storage that is being released was never
allocated by DMSFREE. Such an error is detected if one of the
following errors is found:

o The block does not lie entirely inside either the free storage area
in low-storage or the user program area between FREELOWE
and FREEUPPR.

o The block crosses a page boundary that separates a page
allocated for USER storage from a page allocated for NUCLEUS
type storage.

o The block overlaps another block already on the free storage
chain.

Chapter 4. Using Storage 37

7

8

> 8

Storage Protection Keys

--- ... --- :.~~ -...... __ . __ ___ . _________ . ___ _ ... _._ ... _ .. _ ... _ -.... -..... -....... - _._._J

(DMSFRET) The address given for the block being released is not on
a doubleword boundary.

(DMSFRES) An invalid request code was passed to the DMSFRES
routine. Since all request codes are generated by the DMSFRES
macro, this error code (8) should never appear.

An unexpected and unexplained error has occurred in the free
storage management routine.

In general, the following rule for storage protection keys applies: system
storage is assigned the storage key of X ' FO ' , while user storage is assigned
the storage key of X ' EO '. This is the storage key associated with the
protected areas of storage, not to be confused with the PSW or CAW key
used to acc~ss that storage.

The specific key assignments are as follows:

o The NUCON area is assigned the key of X'FO', with the exception of the
last page containing the OPSECT and TSOBLOKS areas and user free
storage, which have a key of X'EO'.

o Free storage allocated by DMSFREE is broken up into user storage and
nucleus storage. The user storage has a protection key of X'EO', while
the nucleus storage has a key of X'FO'.

o The transient program area has a key of X'EO'.

o The CMS nucleus code has a storage key of X'OO'. In saved systems,
this entire segment is protected by CP from modification even by the
CMS system, and so must be entirely reentrant.

o The user program area is assigned the storage key of X'EO', except for
those pages which contain nucleus DMSFREE storage. These latter
pages are assigned the key of X'FO'.

o The loader tables are assigned the key of X'FO'.

The SET KEYPROTECT Command

The SET KEYPROTECT command controls the resetting of user keys,
X'EO', when a DMSFRET occurs. The format of the SET KEYPROTECT
command is:

SET

38 VM/SP eMS for System Programming

KEYPROTect {ON }
OFF

((~M8 8'l(Ou~E1[JG
r-.----=~:__=:._=~-~=_.:=_--~ ___ ~:_~~_~_:.~=__~~~~=:~~~ _ _=__~==~~-~~~-=_-=-~==_~-.::===~_==:::__==~_._____________ ---.------------=--=-.J

When you issue SET KEYPROTECT ON, the storage keys for the whole
virtual machine, except the non shared pages, are reset according to
FREETAB. Then whenever a DMSFRET occurs, the user keys are reset.

SET KEYPROTECT OFF does not cause the user keys to be reset when a
DMSFRET occurs. (SET KEYPROTECT OFF is the default setting.) If an
ABEND occurs, the storage keys of the virtual machine are reset according
to FREETAB and the setting for KEYPROTECT is maintained.

To check the setting of KEYPROTECT, issue:

QUERY KEYPROTECT

Note: If user programs set keys, they must restore the keys to their
original settings. If there are programs that depend on CMS resetting user
keys, SET KEYPROTECT ON to insure that the user keys are set properly.

eMS Handling of PSW Keys

The DMSKEV Macro

The CMS nucleus protection scheme protects the CMS nucleus from
inadvertent destruction by a user program. This mechanism, however, does
not prevent you from writing in system storage intentionally. Because you
can execute privileged instructions, you can issue a LOAD PSW (LPSW)
instruction and load any PSW key you wish. If this occurs, there is nothing
to prevent your program from:

o Modifying nucleus code
o Modifying a table or constant area
o Losing files by modifying a CMS file directory

In general, user programs and disk-resident CMS commands are executed
with a PSW key of X'E', while nucleus code is executed with a PSW key of
X'O'.

There are, however, some exceptions to this rule. Certain disk-resident
CMS commands run with a PSW key of X'O', because they have a constant
need to modify nucleus pointers and storage. The nucleus routines called
by the GET, PUT, READ, and WRITE macros run with a user PSW key of
X'E' to increase efficiency.

Two macros, DMSKEY and DMSEXS, are available to any routine that
wishes to change its PSW key.

The DMSKEY macro may be used to change the PSW key to the user value
or the nucleus value. The format of the DMSKEY macro is:

Chapter 4. Using Storage 39

[label] DMSKEY {NUCLEUS [,NOSTACKJ I
USER [,NOSTACK] I

I LASTUSER [,NOSTACK]

RESET}

where:

label
is any valid assembler language label.

NUCLEUS
causes the nucleus storage protection key to be placed In the PSW,
and the old contents of the second byte of the PSW are saved in a
stack. This option allows the program to store into system storage,
which is ordinarily protected.

USER
causes the user storage protection key to be placed in the PSW, and
the old contents of the second byte of the PSW are saved in a stack.
This option prevents the program from inadvertently modifying
nucleus storage, which is protected.

LASTUSER
The SVC handler traces back through its system save areas for the
active user routine closest to the top of the stack. The storage key in
effect for that routine is placed in the PSW. The old contents of the
second byte of the PSW are saved in a stack. This option should be
used only by system routines that should enter a user exit routine.
(OS macro simulation routines use this option when they want to
enter a user-supplied exit routine. The exit routine is entered with the
PSW key of the last user routine on the SVC system save area stack.)

NOSTACK
This option may be used with any of the above options to prevent the
system from saving the second byte of the current PSW in a stack. If
this is done, then no DMSKEY RESET need be issued later.

RESET
The second byte of the PSW is changed to the value at the top of the
DMSKEY stack and removed from the stack. Thus, the effect of the
last DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER
request is reversed. However, if the NOSTACK option was specified
on the DMSKEY macro, the RESET option should not be used. A
DMSKEY RESET macro must be executed for each DMSKEY
NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER macro that
was executed and that did not specify the NOSTACK option. Failure
to observe this rule results in program abnormal termination. CMS
requires that the DMSKEY stack be empty when a routine terminates.

40 VM/SP eMS for System Programming

L-_______ _

The DMSE}(S Macro

I,G~~'J~j G'~\Qu'Cl~J\J
___ . _______________ . ______ ._._ ... _~.~ __ ~. __ . __ ~~. ___ .. ~~ .. .:. ___ ~_~ ____ ~~ __ .~~:~:.:._-__ ~~_~ __ ~:_.:.._-~ _____ . __ . ___ ~:_J

Note: The DMSKEY key stack has a current maximum depth of seven for
each routine. In this context, a "routine" is anything invoked by an SVC
call.

The DMSEXS, "execute in system mode," macro allows a routine executed
with a user PSW key to execute a single instruction with a nucleus PSW
key. The single instruction may be specified as the argument to the
DMSEXS macro, and that instruction is executed with a nucleus PSW key.
This macro can be used instead of two DMSKEY macros.

The format of the DMSEXS macro is:

[label] DMSEXS op-code ,operands

The op-code and the operands of the Basic Assembler Language instruction
to be executed must be given as arguments to the DMSEXS macro.

For example, execution of the sequence,

USING NUCON,O
DMSEXS OI,OSSFLAGS,COMPSWT

causes the 01 instruction to be executed with a zero protect key in the
PSW. This sequence turns on the COMPSWT flag in the nucleus. It is
reset with

DMSEXS NI,OSSFLAGS,255-COMPSWT

The instruction to be executed may be an EX instruction.

Note: Programs that modify or manipulate bits in CMS control blocks,
however, may hinder the operation of eMS causing it to function
ineffectively.

Register 1 cannot be used in any way in the instruction being executed.

Whenever possible, CMS commands are executp.d with a user protect key.
This protects the CMS nucleus in cases where there is an error in the
system command that would otherwise destroy the nucleus. If the command
must execute a single instruction or small group of instructions that modify
nucleus storage, then the DMSKEY or DMSEXS macros are used so that
the system PSW key is used for as short a period of time as possible.

Chapter 4. Using Storage 41

(G~JJ8 §~Q)L~@OG
L ___ ._~ ___________________ . __________________ . __ -__ .. ________________ . __________ .. _____ -==-_-:--::--==-=--==-===--:J

42 VM/SP eMS for System Programming

Program lin~(age (SVC Handling)

Register Usage

Program linkages, in CMS, are made by a supervisor call instruction, SVC
202. DMSITS (INTSVC) is the CMS system SVC handling routine. The
general operation of DMSITS is as follows:

1. The SVC new PSW (low-storage location X'60') contains, in the address
field, the address of DMSITS1. The DMSITS module is entered
whenever a supervisor call is executed.

2. DMSITS allocates a system save area and user save area. The user save
area is a register save area (or work area) used by the routine, which is
invoked later as a result of the SVC call.

3. The called routine is called (via a LPSW or BALR).

4. Upon return from the invoked routine, the save areas are released.

5. Control is returned to the caller (the routine that originally made the
SVC call).

When calling a CMS routine, Rl must point to a valid parameter list
(PLIST) for that program. On return, RO mayor may not contain
meaningful information. For example, on return from a call to FILEDEF
with no change, RO contains a negative address if a new FCB (file control
block) was set up. Otherwise, RO contains a positive address of the already
existing FCB. R15 contains the return code, if any. The use of registers 0
and 2 through 11 varies.

When a command or routine is called by SVC 202, the registers contain the
following information:

Chapter 5. Developing Programs under CMS 43

Register Contents

o Points to an extended PLIST if the command is:

e called from the terminal,
o called from a REXX program,
• called from an EXEC 2 EXEC, or
o an Enhanced Connectivity Facilities on VM/SP call (see

SENDREQ in the VM/ SP IBM Programmer's Guide to the
Server-Requester Programming Interface for VM/SP,
SC24-5291).

The EPLIST contains addresses referring to the extended
command as it was initially entered by the user.

1 Points to a parameter list of successive doublewords. The first
entry in the list is the name of the called routine or program.
Any successive doublewords may contain arguments passed to
the program.

13 Contains the address of a 24-fullword save area, which you can
use to save your caller's registers. This save area satisfies
standard OS and DOS linkage conventions. You do not need to
use it in CMS, since the SVC routines save the registers.

14 Contains the return address of the SVC handling routines. You
must return control to this address when you exit from your
program.

12 and 15 Contain your program's entry point address. You can use this
address to establish immediate addressability in your program.
Most CMS routines use R12 as a base register. You should not
use R15 as a base address, since all CMS SVCs use it to
communicate with your programs.

On return from a routine, register 15 contains:

Return Code Meaning
o No error occurred
< 0 Called routine not found
>0 Error occurred

If a CMS routine is called by an SVC 202, CMS saves and restores registers
o through 14.

Figure 5 shows how registers are set up when the called routine is entered.

44 VM/SP eMS for System Programming

___ '-:.J

Ren-istel'G TIer:;istQr Rcr.;iGtel'G nc~iGter Register RegiGtcl' Rcaister
Type 0-1 2 3 - 11 12 13 1,1 15
sve 202 Same as See note Not Address Address Return Address

caller 1 defined of called of user address of called
routine save to routine

area DMSITS

sve 203 Same as Not Not Address See note Return Address
caller defined defined of called 2 address of called

routine to routine
DMSITS

Other Same as Same as Same as Address Address Return Same as
caller caller caller of called of user address caller

routine save to
area DMSITS

Figure 5. Register Contents When Called Routine Starts

Notes:

1. If a nucleus extension or subcommand processor, register 2 has address of
SCBLOCK.

2. Depends on the function being invoked.

Figure 6 show how the PSW fields are set up when the called routine is
entered.

Cnlletl Type SYStClll lVIasli:: Storage ICey Pl'oblClll Bit

sve 202 or 203 -- Disabled System Off
Nucleus Resident

sve 202-- See note 1 See note 1 Off
Nucleus
Extension
Module

sve 202 or 203 -- Disabled See note 2 Off
Transient Area
Module

sve 202 or 203 -- Enabled See note 2 Off
User Area
Module

U ser-handled Enabled User Off

OS-VSE -- Disabled System Off
Nucleus resident

OS-VSE -- Disabled System Off
Transient area
module

Figure 6.PSW Fields When Called Routine Starts

Chapter 5. Developing Programs under CMS 45

[D)G\JG~(Q)[])UuuQJ rrQ[D~~8uuuG ~%U(~G~' CWJS
r_. _____ . _______ .. __ ... ___ . __ .. __ . __ . ____ . ____ . ____________ : ____ . _______ __ .. __ .. _______ ... _

Parameter Lists

Tokenized PLiST

Extended PLiST

Notes:

1. User defined by using the NUCEXT function.

2. User defined by using the CMS GENMOD command or the CMS SET
PROTECT command.

For a tokenized parameter list, the symbolic name of the function being
called (B-character string, padded with blank characters on the right if
needed) is followed by extra arguments depending on the actual routine or
command being called. These arguments must be "tokenized." Every
parenthesis is considered an individual argument, and each argument may
have a maximum length of eight characters. However, no error condition
results. R1 contains the address of this parameter list.

eMS commands look for a token of eight X'FF's to find the end of the
PLIST.

See page 51 for an example of a tokenized PLIST.

For an extended parameter list (EPLIST), no restriction is put on the
structure of the argument list passed to the called routine or command.
The first non-blank character, left parenthesis, or right parenthesis
following the command is treated as a delimiter. This delimiter determines
where the pointer to the start of the argument is.

An extended PLIST has two forms, as illustrated below.

The First Form of the Extended PLIST: In the first form, RO points to
the following parameter list:

(a) DC A(COMVERB)
(b) DC A(BEGARGS)
(c) DC A(ENDARGS)
(d) DC A(0)

where the first three addresses are defined by:

COMVERB EQU *
DC C'cmdname'

BEGARGS EQU *
DC C'

ENDARGS EQU *

and where:

name of command

argument list

(a) is the beginning address of the command.

46 VM/SP eMS for System Programming

(b) is the beginning address of the argument list.
(c) is the address of the byte immediately following the end of the

argument list.

... ·1

(d) may be used to pass any additional information required by individual
called programs. If this word is not used to pass additional
information, it should be zero so that programs receiving optional
information via this word may detect that none is provided in this
call.

See page 51 for an example of an extended PLIST.

Notes:

1. These four words can be moved to some location convenient for the
command resolution routines or convenient for some other program
executed between the caller's sve 202 and entry to the program that the
parameter list is intended. For this reason, the called program may not
assume additional words following word 4, or the called program may not
assume that the storage address of these 4 words bears any relationship to
other data addresses.

2. For function calls in the System Product Interpreter, two additional
words are available. See the VM/ SP System Product Interpreter
Reference for more information on function calls and the two additional
words.

The Second Form of the Extended PLIST: The second form of an
extended PLIST is used by Enhanced Connectivity Facilities on VM/SP (see
SENDREQ in the VM/SP IBM Programmer's Guide to the Server-Requester
Programming Interface for VM/SP, SC24-5291). The second form provides a
way for a routine to:

o Pass up to 64K-1 bytes of arbitrary data and 32K-5 bytes of parameters
to another routine

o Receive up to 64K-1 bytes of arbitrary data and 32K-5 parameters from
another routine.

In the second form, RO points to the following parameter list:

(a) DC A(commandname)
(b) DC F (reserved)
(c) DC F (reserved)
(d) DC A(CPRB)

where:

(a) is the address of the name of the program being called
(b) is unused
(c) is unused
(d) is the address of the connectivity program request block (CPRB).

If your routine is being called by another routine, you can verify that your
routine is being called using the second form of an extended PLIST. Check

Chapter 5. Developing Programs under CMS 47

r::-:-_-==~· ____

Common SVC Calls

SVC 202

the contents of A(CPRB) + 4. This address should contain the characters
CPRB.

If you want to call another routine using the second form of an extended
PLIST, see SENDREQ in the VM/SP IBM Programmer's Guide to the
Server-Requester Programming Interface for VM/ SP, SC24-5291.

SVC conventions are important to any discussion of CMS because the
system is driven by SVCs (supervisor calls). SVCs 202 and 203 are the most
common CMS SVCs.

SVC 202 is the most commonly used SVC in the CMS system. It is used for
calling nucleus-resident routines, nucleus extensions, and routines written
as commands (for example, disk resident modules).

A typical coding sequence for an SVC 202 call is the following:

LA Rl,PLIST
SVC 202
DC AL4(ERRADD)

First, load the address of the parameter list into Rl and then issue an SVC.
The "DC AL4(address)" instruction following the SVC 202 is optional and
may be omitted if you do not expect any errors to occur in the routine or
command being called.

If the DC statement is included and the return code (RI5) contains a
nonzero value after returning from the SVC call, control passes to the
address specified in the DC unless the address is equal to 1. In the above
example, control would go to the instruction at the label ERRADD.

If the address is 1, return is made to the instruction following the "DC
AL4(1)" instruction. DMSITS determines whether this DC was inserted by
examining the byte following the SVC call. If the byte is nonzero, the
statement following the SVC 202 is an instruction. If the byte is zero, the
statement following the SVC 202 is either "DC AL4(address)" or "DC
AL4(1)".

If you want to ignore errors, you can use the sequence:

LA Rl,PLIST
SVC 202
DC AL4(l)

Whenever an SVC 202 is issued, the contents of general purpose registers 0
and 1 (RO and Rl) are passed to the called routine. Rl points to an
8-character string, which may be the start of a tokenized PLIST. This
character string contains the symbolic name of the routine or command /
being called. The called routine decides whether to use the tokenized

48 VM/SP eMS for System Programming

II"(-.)~J\:.ln~;), r'-j' ~rj\'-J r<)r,"!'':'-Jf'h'''}r, :J-').('" n nr',')" 1. ',,\f 1 ;I~:\.'J(.~) ',cJ ,_1' \ .-,U '_ Ul J u u ,.1 l.J ~_, u l l .J ',_J.Jl \ _J',.-'U ' • ...JLJ'J " __
u \".__ '-.

[:=_::.~~-=:~-:-:~.-.,,:-_ ... _~:::-:-~: :::~~::-=~~-~~_'~~~:~~~.:~:=-=~:':'_:'='~'':'''~: __ --':_ :~_ ,._~:,_"._ _. __ . __ ':'.~_"':_,_:.: __ .. __ .. __ .. ___ .. _:~_ .. _. __ ._. ___ , :... . .::,_ .. __ .. ___ . , ... ____ .. __ ., .,_" __ . ___ ,. ,_ .. ____ J

PLIST or the extended PLIST (one of two forms) by examining the
high-order byte of Rl. The SVC handler only examines the name and the
high-order byte of Rl.

Note: Although an extended PLIST is provided, the called routine might
not be set up to use it.

When a program gets control, it checks the value of the the high-order byte
of RI to determine what environment (EXEC, command line, etc.) it was
called from and if an extended PLIST is available. Then the program may
take appropriate action. CMS only places these values in the high-order
byte for the convenience of the program.

The following values may be found in the high-order byte of register 1:

E::tl3!!d~~l
PLIST
Pointer in

Value IVlcnninG llcfjiGter O?

X'OO' The call did not originate from an EXEC No
file or a command typed at the terminal.
(The SVC handler translates the value
X'04' to X'OO' before entering the called
program.)

X'OI' Either the call is from an EXEC 2 EXEC Yes
or the System Product Interpreter when
"ADDRESS COMMAND" is specified, or
the call is an Enhanced Connectivity
Facilities on VMjSP call (see SENDREQ
in the VMj SP IBM Programmer's Guide
to the Server-Requester Programming
Interface for VMj SP, SC24-5291). You can
tell by checking the form of the extended
PLIST, see "Extended PLIST" on page 46.
(The SVC handler translates the value
X'03' to X'OI' before entering the called
program.)

X'02' See "Dynamic LinkagejSUBCOM" on Yes
page 59.

X'05' Used by the System Product Interpreter Yes
for external function calls.

X'06' The command was invoked as an Yes
immediate command. This setting should
never occur with SVC 202.

X'OB' The command was called as a result of its Yes
name being typed at the terminal, by the
CMDCALL command to invoke the
command from EXEC 2, or from a System
Product Interpreter EXEC when
"ADDRESS CMS" is specified.

Figure 7 (Part 1 of 2). SVC 202 High-Order Byte Values of Register 1

Chapter 5. Developing Programs under CMS 49

E:::rtended
PLIST
Pointer in

Value MeaninrJ Register O?

X'OC' The call is the result of a command No
invoked from a CMS EXEC file with
"&CONTROL" set to something other
than "NOMSG" or "MSG".

X'OD' The call is the result of a command No
invoked from a CMS EXEC file with
"&CONTROL MSG" in effect (indicates
that messages are to be displayed at the
terminal).

X'OE' The call is the result of a command No
invoked from an CMS EXEC file with
"&CONTROL NOMSG" in effect.

X'FE' This is an end-of-command call from No
DMSINT (CMS console command
handler). See the NUCEXT function in
the VM/ SP CMS Macros and Functions
Reference for details.

X'FF' This is a service call from DMSABN No
(abend) or from NUCXDROP. See the
NUCEXT function in the VM/ SP CMS
Macros and Functions Reference for
details.

Figure 7 (Part 2 of 2). SVC 202 High-Order Byte Values of Register 1

Some CMS commands work differently when called from different
environments. An assembler language program can simulate the various
environments (listed in Figure 7 under "Meaning") by using the
appropriate high-order byte.

For example, to call the ERASE command from an assembler program and
to suppress error messages, the program uses a high-order byte of X'OE'.
This simulates a call from a CMS EXEC with "&CONTROL NOMSG" in
effect.

Some CMS commands can take advantage of an extended PLIST if it is
supplied. For example, the FILEDEF command uses the extended
parameter list when processing the DSN qual1[.qual2 ...] parameter. The
following program shows how to set up an extended parameter list and call
FILEDEF. The high-order byte, X'OI', in the program example simulates a
call from an EXEC2 EXEC or the System Product Interpreter when
"ADDRESS COMMAND" is specified.

50 VMjSP eMS for System Programming

~jGi'J(3~O[')OuuU [Ju'(0UuJ~luullG o..~u··ucJ~)uJ (G~tfJ~)
c====-==-=-=..:-=--:::=...:_-_=.~~~=~~~..:.:==~-_~=~=-·:..:_~=::::·~=~:~~~·~ ..:_-_--._::=:~=_==-_~:=.=:=-:= .===~":'::==-=~=":~~~~~. __ ~~:~=~_":':~~==":':":=--:J

SAMPLE
*
*
*

PLIST

*
*
*

EPLIST

COMVERB
BEGARGS

ENDARGS
*
*

CSECT

ISSUE 'FILEDEF SYSIN DISK A A A DSN G.TEMP.DATA.LIBRARY'

REGEQU
USING *,R12
LR
LA
LA
ICM
SVC
DC
BR
DS
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
EQU
DC
EQU

END

R12,R15
RO,EPLIST
RI,PLIST
RI,B'IOOO' ,=X'OI'
202
AL4(l)
R14
OF
CLS'FILEDEF '
CLS'SYSIN'
CLS'DISK'
CLS'A'
CLS'A'
CLS'A'
CLS'DSN'
CLS'G.TEMP.D' NOTICE THAT THIS IS TRUNCATED

BUT FILEDEF WILL USE THE
EXTENDED PARAMETER LIST
BELOW.

2F'-1'
A (COMVERB)
A(BEGARGS)
A(ENDARGS)
A(O)
C'FILEDEF '
*
C'DISK A A A DSN G.TEMP.DATASET.LIBRARY'
* ENDARG POINTS ONE CHARACTER

PAST THE END OF THE
PARAMETER LIST.

Refer to page 43 for a description of the contents of R12, R13, R14, and R15.

BVC 202 Return Codes: On return from SVC processing, register 15
contains one of the following return codes:

o No errors occurred.

-1 A CP command with this name was not found.

-2 An attempt was made to execute a CMS command while in CMS subset
mode. This would have caused the module to be loaded in the user
area.

-3 A CMS command issued from EXEC was not found with this name, or
an invalid function occurred when the SET or QUERY command was
issued from EXEC with IMPCP active.

-4 The LOADMOD failed.

Chapter 5. Developing Programs under CMS 51

r~.J)c:'?\7c~~CDLJ)Duu£D [;)rOQW'f:luuuD ~.%ll(~Q~~ (~l~~QS:)

SVC 203

-.-.-~::-:-::=.===~::-=~-.. --.. -------.. -.------.--.--.... --.. -.---------.---.:---:.::-:-~'-:---.-.--.. -.--.--.. -------." ·'·1

-5 A LOADMOD was issued in the wrong environment (for example, the
module was generated by the GENMOD command with the as option,
and LOADMOD was attempted with DOS = ON specifi~d).

sve 203 is called by eMS macros to perform various internal system
functions. It is used to define sve calls when no parameter list is provided.
For example, DMSFREE parameters are passed in registers 0 and 1.

A typical calling sequence for an sve 203 call is:

SVC 203
DC H'code'

The halfword decimal code following the sve 203 indicates the specific
routine being called. DMSITS examines this halfword code taking the
absolute value of the code using a LPR instruction. The first byte of the
result is ignored, and the second byte of the resulting halfword is used as
an index into a branch table. The address of the correct routine is loaded,
and control is transferred to it.

It is possible for the address in the sve 203 index table to be zero. In this
case, the index entry contains an 8-byte routine or command name, which is
handled in the same way as the 8-byte name passed in the parameter list to
an sve 202.

The sign of the halfword code indicates whether the programmer expects an
error return. If an error return is expected, the code is negative. If the
code is positive, no error return is made. The sign of the halfword code has
no effect on determining the routine called since DMSITS takes the
absolute value of the code to determine the routine called.

Since only the second byte of the absolute value of the code is examined by
DMSITS, seven bits (bits 1-7) are available as flags or for other uses. For
example, DMSFREE uses these seven bits to indicate such things as
conditional requests and variable requests. Therefore, DMSITS considers
the codes X'3' and X'259' to be identical and handles them the same as X'-3'
and X'-259', except for error returns.

When an sve 203 is invoked, DMSITS stores the half word code into the
NUeON location eODE203 so the called routine can examine the seven bits
made available to it.

All calls made by sve 203 should be made by macros with the macro
expansion computing and specifying the correct halfword code.

52 VM/SP eMS for System Programming

[DG'\JG~I1)~)Uu·~u [Ju'CGUu'c}u·u·uS [L%l)(LJG~· (CLtJS
[~=--.:.:==~.:.~_. _ .. ~ __ ._. -_ .. _____ . ______ -_ _ ... _.--_ .. _ -_.-._.-_-_-.-_--.--.--- ::.-.:~. __ ~~~. __ ..:_. _. -.:.~_~..: .. _.~~~ .. ___ .~~=_ ... _ .. _ .. ~ .. ~J
User-Handled SVCs

The programmer may use the HNDSVC macro to specify the address of a
routine that processes any SVC call for SVC numbers 0 through 200 and 206
through 255. If the HNDSVC macro is used, the linkage conventions are as
required by the user-specified SVC-handling routine. You cannot specify a
normal or error return from a user-handled SVC routine.

OS and VSE Macro Simulation SVC Calls

Invalid SVC Calls

CMS supports selected SVC calls generated by OS and VSE macros by
simulating the effect of these macro calls. DMSITS is the initial SVC
interrupt handler. If the SET DOS command has been issued, a flag in
NUCON indicates that VSE macro simulation is to be used. Control is then
passed to DMSDOS. Otherwise, OS macro simulation is assumed and
Dr.1SITS passes control to the appropriate OS simulation routine.

DMSDOS acquires the specified SVC code from the OLDPSW field of the
current SVC save area. Using this code, DMSDOS computes the address of
the routine where the SVC is to be handled.

Many CMS/DOS routines (including DMSDOS) are contained in a
discontiguous shared segment (DCSS). Most SVC codes are executed
within DMSDOS, but some are in separate modules external to DMSDOS.
If the SVC code requested is external to DMSDOS, its address is computed
using a table called DCSSTAB. If the code requested is executed within
DMSDOS, the table SVCTAB is used to compute the address of the code to
handle the sve.

There are several types of invalid SVC calls recognized by DMSITS.

1. Invalid sve number. If the SVC number does not fit into any of the
classes described above, it is not handled by DMSITS. An error
message is displayed on your terminal, and control is returned directly
to the caller.

2. Invalid routine name in SVC 202 parameter list. If the routine named
in the SVC 202 parameter list is invalid or cannot be found, DMSITS
handles the situation in the same way as it handles an error return
from a legitimate SVC routine. You receive an error code of -3.

3. Invalid sve 203 code. If an invalid code follows SVC 203 inline, an
error message is displayed on your terminal and the abend routine is
called to terminate execution.

Chapter 5. Developing Programs under CMS 53

Search Hierarchy for SVC 202

SVC 202 Entered from a Program

When a program issues SVC 202 and passes a routine or command name in
the parameter list, DMSITS searches for the specified routine or command.
(In the case of SVC 203 with a zero in the table entry for the specified
index, the same logic must be applied.)

As soon as the routine or command name is found, the search stops and the
routine or command is executed. Figure 9 on page 58 and the following list
describe the search order.

1. DMSITS determines if the specified name is known dynamically to CMS
through the SUBCOM function. This step is executed only if the
high-order byte of Rl contains X'02'.

2. DMSITS searches for a nucleus extension routine with the specified
name.

Note: This step is skipped if the high-order byte of register 1 contains
X'03' or X'04'. X'03' indicates that an extended PLIST is provided. X'04'
indicates that a tokenized PLIST is provided. X'03' and X'04' are
translated to X'Ol' and X'OO', respectively, by the SVC interrupt handler
before the called program is entered.

3. DMSITS searches for a routine with the specified name in the transient
area.

4. DMSITS searches for a nucleus-resident command with the specified
name.

5. DMSITS searches currently accessed disks for a file with the specified
name and a filetype MODULE. CMS uses the standard search order (A
through Z). If this search is successful, the specified module is loaded
(via the LOADMOD command) and control is passed to the storage
location now occupied by the command. The table of active (open) disk
files is searched first. An open file may be used ahead of a file that
resides on a disk earlier in the· search order.

6. DMSITS calls

a. DMSPKT to search the translation tables for the specified name. If
found, DMSITS searches for a routine with the valid translation by
repeating steps 2 through 5.

Note: This step is skipped if this SVC call is not from DMSINT or
DMSCSF.

54 VM/SP eMS for System Programming

L_~~. ___ . ____ . __ . ____ ._.: __ .. _~. __ . __ .~ __ . ___ .. _ .. _ .. __ ... -':"" __ ._'. __ ~:' ... _. ___ ._ _. " ... _ ... _. __ ... _ ____ ~ __ . __ ._: __ ~~_~~~_.~ __ .~_::._:=~~:: __ -_.::~. __ .. _- _:. __ . __ . __ ~:~::~-':'J

b. DMSINA to search the synonym tables for the specified name. If
found, DMSITS searches for a routine with the valid synonym by
repeating steps 2 through 5.

If all searches fail, then an error code of -3 is issued.

Commands Entered from the Terminal

When a command is entered from the terminal, DMSINT processes the
command line and calls the scan routine to convert it into a parameter list
consisting of 8-byte entries.

As soon as the command name is found, the search stops and the command
is executed. Figure 8 on page 57 and the following list describe the search
order.

1. Search for an EXEC with the specified command name:1

a. DMSINT searches for an EXEC in storage. If an EXEC with this
name is found, DMSINT determines whether the EXEC has a USER,
SYSTEM, or SHARED attribute. If the EXEC has the USER or
SYSTEM attribute, it is executed.

If the EXEC has the SHARED attribute, the INSTSEG setting is
checked. When INSTSEG is ON, all accessed disks are searched
and the access mode of the Installation Discontiguous Shared
Segment (DCSS) is compared to the mode of an EXEC with that
name that resides on disk. If the access mode of the DCSS is equal
to or higher than the disk mode, the EXEC is executed. Otherwise,
the EXEC on disk is executed.

b. DMSINT searches accessed disks for a file with the specified name
and filetype· EXEC. The table of active (open) disk files is searched
first. An open file may be used ahead of a file that resides on a disk
earlier in the search order.

2. DMSINT calls

a. DMSPKT to search the translation tables for the specified name. If
found, DMSINT searches for a routine with the valid translation by
repeating step 1.

b. DMSINA to search the synonym tables for the specified name. If
found, DMSINT searches for a routine with the valid synonym by
repeating step 1.

3. DMSINT executes SVC 202, passing the scanned tokenized parameter
list, with the command name in the first eight bytes of the PLIST
pointed to by register 1 and the extended PLIST address in register O.

If implied EXEC is not in effect (SET IMPEX OFF), skip steps 1 and 2.

Chapter 5. Developing Programs under CMS 55

M8vG~(i)~d)UfJuf:~ [JrOCJG'ouuuG QJr;uC~GfJ1 CL1!JS
[------.=-::-::-~==:==-==:=====-=-=.~.~.~==.==-:::::::.=.:=~ .. ~~:::~=:--~~:~=::-.::=-=.:::=~~==---==-=:-.--.--. _._ .. "-"'-. __ .- ..

DMSITS performs the search for SVC 202 as described above in "SVC
202 Entered from a Program."

4. DMSINT searches for a CP command with the specified name, using the
CP DIAGNOSE instruction.2

5. If all of these searches fail, DMSINT displays the error message:

Unknown CP/CMS Command

2 If implied CP is not in effect (SET IMPCP OFF), skip step 4.

56 VM/SP CMS for System Programming

[--_ - ... _-- - - . --- --- ._--

Read line from
terminal
("name ... ")

Notes:

1. If the command SET IMPEX OFF
hos been executed, implied EXEC
is not in effect.

2. This EXEC must exist in storage
or on DASD.

3. A -3 return code indicates SVC 202
processing did not find the command.

4. If the command SET IMPCP OFF
has been executed, implied CP is
not in effect.

Figure 8. CMS Command Processing

name is now a
real name from
a translation or
synonym table

Issue SVC 202

(See SVC 202
subroutine)

No

No

No

Display
UNKNOWN
CP/CMS
COMMAND

Expand the line b
inserting EXEC in
front of the
command name;
ie. 'EXEC name'

Poss line to CP
for processing

Yes

Display Ready

~--~ ~~~~a~:dew;:h
RC~-O

Chapter 5. Developing Programs under CMS 57

Figure 9. SVC 202 Processing

Command Search Function

SUBCOM provides a function that lets you invoke a command (from a
program) that is resolved according to the CMS command search hierarchy.
That is, the command is resolved just as though the command was entered
from the terminal. This SUBCOM function is named CMS. This command
search function checks the IMPEX and IMPCP settings of CMS SET.

58 VM/SP eMS for System Programming

[--

The CMS SUBCOM function is defined during system initialization at IPL
and remains defined during the entire CMS session.

To pass a command to the CMS SUBCOM function, the user should define
PLISTs as follows:

PLIST

EXPLIST

BEGARGS

ENDARGS

DS
DC
DS
DC
DC
DC
DC

DS
DC
EQU

OF
CL8'CMS'
OF
A(PLIST)
A(BEGARGS)
A(ENDARGS)
A(0)

OF
C'command to be invoked'
*

Register 1 must contain the address of PLIST and a high order byte of X'02'.
Register 0 must contain the address of the extended PLIST. Having
established the PLIST and register information the user issues an SVC 202.
The X'02' in the high order byte of register 1 indicates that this is a call to
a previously defined SUBCOM.

Dynamic Linkage/SUBCOM

It is possible for a program that is already loaded from disk to become
dynamically known by name to CMS for the duration of the current
command; such a program can be called via SVC 202. In addition, this
program can also make other programs dynamically known if the first
program can supply the entry points of the other programs.

To become known dynamically to CMS, a program or routine invokes the
create function of SUBCOM. To invoke SUBCOM, issue the following
calling sequence from an assembler language program:

LA R1,PLIST
SVC 202
DC AL4(ERROR)

PLIST DS OF
DC CL8'SUBCOM'

SUBCNAME DC CL8'narne' COMMAND NAME
SUBCPSW DC XL2'0000' SYSTEM MASK, STORAGE KEY,

ETC.
DC AL2(O) RESERVED

SUBCADDR DC A(O) ENTRY ADDRESS, -1 FOR
QUERY PLIST

DC A(O) USER WORD

SUBCOM creates an SCBLOCK control block containing the information
specified in the SUBCOM parameter list. SVC 202 uses this control block
to locate the specified routine. All non-system SUBCOM SCBLOCKS are
released at the completion of a command (that is, when CMS displays the
ready message). A SUBCOM environment may be defined as a system
SUBCOM by setting a X'80' in the first byte of the interruption code field of

Chapter 5. Developing Programs under CMS 59

the PLIST. See VM/SP Data Areas and Control Block Logic Volume 2
(eMS) for a description of the SCBLOCK control block.

When a program issues an SVC 202 call to a program that has become
known to CMS via SUBCOM, it places X'02' in the high-order byte of
register 1. Control passes to the called program at the address specified by
the called program when it invoked SUBCOM.

The PSW in the SCBLOCK specifies the system mask, the PSW key to be
used, the program mask (and initial condition code), and the starting
address for execution. The problem-state bit and machine-check bit may be
set. The machine-check bit has no effect in CMS under CPo The EC-mode
bit and wait-state bit cannot be set. They are always forced to zero. Also,
one 4-byte, user-defined word can be associated with the SUBCOM entry
point and referred to when the entry point is subsequently called.

When control passes to the specified entry point, the register contents are:

R2 Address of SCBLOCK for this entry point.
RI2 Entry point address.
RIa 24-word save area address.
RI4 Return address (CMSRET).
RI5 Entry point address.

You can also use SUBCOM to delete the potential linkage to a program or
routine's SCBLOCK, or you can use SUBCOM to determine if an
SCBLOCK exists for a program or routine.

To delete a program or routine's SCBLOCK, issue:

DC CL8'SUBCOM'
DC CL8'program or routine name'
DC 8X'OO'

To determine if an SCBLOCK exists for a program or routine, issue:

DC CL8'SUBCOM'
DC CL8'program or routine name'
DC A(O) SCBLOCK addressed as a returned value
DC 4X'FF'

Note that if 'SUBCOM name' is called from an EXEC file, the QUERY
PLIST is the form of PLIST that is issued.

To query the chain anchor, issue:

DC CL8'SUBCOM'
DS CL8
DS AL4

DC AL4(l)

(contents not relevant)
Will receive chain anchor
contents from NUCSCBLK
Indicates request for anchor

Note that the anchor is equal to F'O' if there are no SCBLOCKs on the
chain.

60 VM/SP eMS for System Programming

/'

L_.-. ____ ... ~ .. _. _____ .. __ . __ ...

Note: If you create SCBLOCKS for several programs or routines with the
same name, they are all remembered, but SUBCOM uses the last one
created. A SUBCOM delete request for that name eliminates only the most
recently created SCBLOCK making active the next most recently created
SCBLOCK with the same name.

When control returns to CMS after a console input command has
terminated, the entire SUBCOM chain of SCBLOCKs is released. None of
the subcommands established during that command are carried forward to
be available during execution of the next console command.

SUBCOM Function Return Codes

Return codes from the SUBCOM function are:

o Successful completion. A new SCBLOCK was created, the
specified SCBLOCK was deleted, or the specified program or
routine has an SCBLOCK.

1 No SCBLOCK exists for the specified program or routine. This is
the return code for a delete or a query.

25 No more free storage available. SCBLOCK cannot be created for
the specified program or routine.

Returning to the Calling Routine

Return Location

When the called routine finishes processing, it returns control to DMSITS.
Then DMSITS returns control to the calling routine.

The return is accomplished by loading the original SVC old PSW, which
was saved at the time DMSITS was first entered, after possibly modifying
the address field. The address field modification depends upon the type of
SVC call and upon whether the called routine indicated an error return.

For SVC 202 and 203, the called routine places a zero in register 15
indicating a normal return and a nonzero code in register 15 indicating an
error return. If the called routine indicates a normal return, DMSITS
makes a normal return to the calling routine. If the called routine
indicates an error return, DMSITS passes the error return address to the
calling routine, if one was specified. If no error return address was
specified, DMSITS abnormally terminates.

For an SVC 202 not followed by "DC AL4(address)" or "DC AL4(1)", a
normal return is made to the instruction following the SVC instruction and
an error return causes an abend. For an SVC 202 followed by "DC
AL4(address)", a normal return is made to the instruction following the DC
and an error return is made to the address specified in the DC, unless the
address is equal to 1. If the address is 1, return is made to the next

Chapter 5. Developing Programs under CMS 61

1

[Q)Gt'7G~(i)~]UUu[j ~"2)~1~g!r8UuuG n.mucJG[j" ~L0~S)
c=. ___ . _____ . ____________ . _______ ._. __________ . ____________ ._. _________ . _____ ._. __________________________ ~:::==========_==J

Register Restoration

instruction after the "DC AL4(1)" instruction. In either case, register 15
contains the return code passed back by the called routine.

For an SVC 203 with a positive halfword code, a normal return is made to
the instruction following the halfword code and an error return causes an
abend. For an SVC 203 with a negative halfword code, both normal and
error returns are made to the instruction following the halfword code. In
any case, register 15 contains the return code passed back by the called
routine.

For OS macro simulation SVC calls and user-handled SVC calls, no error
return is recognized by DMSITS. As a result, DMSITS always returns to
the calling routine by loading the SVC old PSW that was saved when
DMSITS was first entered.

Upon entry to DMSITS, all registers are saved as they were when the SVC
instruction was first executed. Upon exiting from DMSITS, all registers are
restored to the values that were saved at entry.

The exception to this is register 15 for SVC 202 and 203. Upon return to
the calling routine, register 15 always contains the value that was in
register 15 when the called routine returned to DMSITS after it had
completed processing.

Modification of the System Save Area

If the called routine has system status so that it runs with a PSW storage
protect key of 0, it may store new values into the system save area.

If the called routine wishes to modify the location where control is to be
returned, it must modify the following fields:

o For SVC 202 and 203, the called routine must modify the NRMRET and
ERRET (normal and error return address) fields.

o For other SVCs, the called routine must modify the address field of
OLDPSW.

To modify the registers that are returned to the calling routine, the fields
EGPR1, EGPR2, through EGPR15 must be modified.

If this action is taken by the called routine, the SVCTRACE facility may
print misleading information, since SVCTRACE assumes that these fields
are exactly as they were when DMSITS was first entered. Whenever an
SVC call is made, DMSITS allocates two save areas for that particular SVC
call. Save areas are allocated as needed. For each SVC call, a system and
user save area are needed.

When the SVC-called routine returns, the save areas are not released. They
are kept for the next SVC. If the routine invoked by the SVC called the
parsing facility, any storage allocated by the parsing facility for parsing

62 VM/SP eMS for System Programming

L..:........ ____ ~ ___ _ ... _ ... _ ... _ ... _.

results is released upon return. At the completion of each command, all
SVC save areas allocated by that command are released.

DMSITS uses the system save area to save the .value of the SVC old PSW at
the time of the SVC call, the calling routine's registers at the time of the
call, and any other necessary control information. Since SVC calls can be
nested, there can be several of these save areas at one time. The system
save area is allocated in protected free storage.

The user save area (DSECT EXTUAREA) contains 12 doublewords (24
words) allocated in unprotected free storage. DMSITS does not use this
area at all. It simply passes a pointer to this area (via register 13). The
called routine can use this area as a temporary work area or as a register
save area. Each system save area has one user save area. The USA VEPTR
field in the system save area points to the user save area.

The exact format of the system save area can be found in the VMj SP Data
Areas and Control Block Logic Volume 2 (CMS). The most important fields
and their uses are as follows:

Field

CALLER

CALLEE

CODE

OLDPSW

NRMRET

ERRET

EGPRS

EFPRS

Usage

(Full word) The address of the SVC instruction that resulted
in this call.

(Doubleword) 8-byte symbolic name of the called routine.
For OS and user-handled SVC calls, this field contains a
character string of the form SVC nnn, where nnn is the SVC
number in decimal.

(Halfword) For SVC 203, this field contains the halfword
code following the SVC instruction line.

(Doubleword) The SVC old PSW at the time that DMSITS
was entered.

(Fullword) The address of the calling routine where control
is passed in case of a normal return from the called routine.

(Fullword) The address of the calling routine where control
is passed in case of an error return from the called routine.

(16 Fullwords, separately labeled EGPRO, EGPRl, EGPR2,
EGPR3, ... , EGPRI5) The entry registers. The contents of
the general purpose registers at entry to DMSITS are stored
in these fields.

(4 Doublewords, separately labeled EFPRO, EFPR2, EFPR4,
EFPR6) The entry floating-point registers. The contents of
the floating-point registers at entry to DMSITS are stored in
these fields.

,.
Chapter 5. Developing Programs under CMS 63

SSAVENXT (Fullword) The address of the next system save area in the
chain. This points to the system save area being used, or
will be used, for any SVC call nested in relation to the
current one.

SSA VEPRV (Full word) The address of the previous system save area in
the chain. This points to the system save area for the SVC
call in relation to where the current call is nested.

USA VEPTR (Full word) Pointer to the user save area for this SVC call.

The eMS Subset Environment

When you issue the XEDIT subcommand:

ems

the editor responds:

eMS subset

and your virtual machine is in CMS subset mode. When in subset mode,
you can issue any valid CMS subset command, that is, a CMS command
that is allowed in CMS subset mode. The commands that are not allowed in
the CMS subset environment are commands that execute in the user area.
You can also issue CP commands. To return to edit mode, you use the
special CMS subset command, RETURN. If you enter the Immediate
command HX, your editing session terminates abnormally and your virtual
machine returns to the CMS environment.

When entering CMS subset mode either for a single command or until the
string 'RETURN' is entered, the following processing is done to ensure that
the previous environment is preserved. Upon entry to subset, a check is
made to determine if this entry would constitute a recursion, if so, return
code 1 is returned.

1. ST AE, SPIE, and STAX information is saved and then cleared.

2. The OS environment settings are saved and then cleared so that any
module that issues an OSRESET based on these flags will not do so.

3. The read and write pointers from any currently opened files are saved.

4. All files are then closed by a 'FINIS * * *', but files with a filemode of 3
are not erased.

5. Any FSTs that were built by a previous call to STATE are saved.

If the entry to subset was just for the execution of a single command, the
entry message is suppressed and the next command is executed immediately.
But, if the request was to enter CMS subset for an indefinite duration, an

64 VM/SP OMS for System Programming

[___ . ____ •••. __ ••••• u _ .••.••. ~._ ...• _ _ .••••. _ •. _ •••. _ •. h_ .•.• ___ ••. __ • ___ .• _ ••••••• __ ._. ___ •• _._ •• _. _________ • __ ._. __ • ___ •

announcement of entry to the CMS subset environment is made. This is
done so that a strict differentiation from the strict command environment is
given.

The principle difference in subset is the restriction that any command
executed may not use any storage other than DMSFREE storage and the
transient area. This protects programs which may be running in the USER
AREA. Also, any ready message issued from subset is in the abbreviated
form (i.e. identical to SET RDYMSG SMSG) so that program timing
information is not affected for the command currently in progress at the
time of subset entry.

Upon termination of CMS subset mode any settings or values that were
saved upon entry to subset are restored.

Assembiing Programs

To assemble assembler language source programs into object module
format, you can use the ASSEMBLE command, .and specify assembler
options on the command line. For example:

assemble myfile (print

assembles a source program named MYFILE ASSEMBLE and directs the
output listing to the printer. All of the ASSEMBLE command options are
listed in the VM/SP CMS Command Reference.

When you invoke the ASSEMBLE command specifying a file with the
filetype of ASSEMBLE, CrdS searches all of your accessed disks, using the
standard search order, until it locates the specified file. When the
assembler creates its output listing and text deck, it creates files with
filetypes of LISTING and TEXT, and writes them onto disk according to the
following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING files
are written onto that disk.

2. If the source file is on a read-only extension of a read/write disk, the
TEXT and LISTING files are written onto the parent disk.

3. If the source file is on any other read-only disk, the TEXT and LISTING
files are written onto the A-disk.

4. If none of the above choices are available, the command is terminated.

In all of the above cases, the TEXT and LISTING files have a filename that
is the same as the input ASSEMBLE file.

The input and output files used by the assembler are assigned by FILEDEF
commands that CMS issues internally when the assembler is invoked. If
you issue a FILEDEF command using one of the assembler ddnames before

Chapter 5. Developing Programs under CMS 65

you issue the ASSEMBLE command, you can override the default file
definitions.

The ddname for the source input file (SYSIN) is ASSEMBLE. If you enter:

filedef assemble reader
assemble sample

then the assembler reads your input file from your card reader and assigns
the filename SAMPLE to the output TEXT and LISTING files.

You could assemble a source file directly from an as disk by entering:

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

In this example, the CMS file identifier MYFILE ASSEMBLE is assigned to
the data set OS.SOURCE.FILE and then assembled.

LISTING and TEXT are the ddnames assigned to the SYSPRINT and
SYSLIN output of the assembler. You might assign file definitions to
override these defaults as follows:

fi1edef listing disk assemble listfile a
flledef text disk assemble textfile a
assemble myfile

In this example, output from the assembly of the file, myfile ASSEMBLE, is
written to the files, ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE.

The ddnames PUNCH and CMSLIB are used forSYSPUNCH and SYSLIB
data sets. PUNCH output is produced when you use the DECK option of
the ASSEMBLE command. The default file definition for CMSLIB is the
macro library CMSLIB MACLIB, but you must still issue the GLOBAL
command if you want to use it.

Executing Programs

After you have assembled or compiled a source program, you can execute
the TEXT files that were produced by the assembly or compilation. You
may not, however, be able to ~xecute all ,your as programs directly in CMS.
There are a number of execution-time restrictions placed on your virtual
machine by VM/SP. You cannot execute a program that uses:

• Multitasking
• More than one partition
• Teleprocessing
• IS AM macros to read or write files
• The PSW EC mode bit

66 VM/SP eMS for System Programming

Executing TEXT Files

The above is only a partial list of restrictions you might be concerned with.
For a complete list of restrictions, see the VMjSP Planning Guide and
Reference.

TEXT files, in CMS, are relocatable and can be executed simply by loading
them into virtual storage with the LOAD command and using the START
command to begin execution. For example, if you have assembled a source
program named CREATE, you have a file named CREATE TEXT. You can
issue the command:

load create

that loads the relocatable object file into storage. Then, to execute it, you
can issue the START command:

start

In the case of a simple program, as in the above example, you can load and
begin execution with a single command line, using the START option of the
LOAD command:

load create (start

When you issue the START command or LOAD command with the START
option, control is passed to the first entry point in your program. If you
have more than one entry point and you want to begin execution at an
entry point other than the first, you can specify the alternate entry point or
CSECT name on the START command:

start create2

When you issue the LOAD command specifying the filename of a TEXT file,
CMS searches all of your accessed disks for the specified file.

If your program expects a parameter list to be passed (via register 1), you
can specify the arguments on the START command line. If you enter
arguments, you must specify the entry point:

start * narnel

When you specify the entry point as an asterisk (*), it indicates that you
want to use the default entry point.

Defining Input and Output Flies

You can issue the FILEDEF command to define input and output files any
time before you begin program execution. You can issue all your file
definitions before loading any TEXT files, or you can issue them during the
loading process. You can find out what file definitions are currently in
effect by issuing the FILEDEF command with no operands. You can also
use the FILEDEF operand of the QUERY command.

Chapter 5. Developing Programs under CMS 67

~1r:~\7~)~O[-vDUl}fj fDL"O['JG1 8uu'Uf) ~nuucJc~G~ Gr\~s
[::~~:.:~~~~~::-"-.. ~-:-:~~:~~-==_~===::-::~~=~===.~:=~~"'::"=-'::-~~-=" ~=:~~~----.-.-.----.-.~-.----~----.... --:-:---. --:--:1

Resolving External References

The CMS loader loads files into storage as a result of a LOAD or INCLUDE
command. When a file is loaded, the loader checks for unresolved
references. If there are any, the loader searches your disks for TEXT files
with filenames that match the external entry name. When it finds a match,
it loads the TEXT file into storage. If a TEXT file is not found, the loader
searches any available TXTLIBs for members that match. If a match is
found, it loads the member;

If there are still unresolved references, for example, if you load a program
that calls routines PRINT and ANALYZE but the loader cannot locate
them, you receive the message:

The following names are undefined:
PRINT
ANALYZE

You can issue the INCLUDE command to load additional TEXT files or
TXTLIB members into storage so die loader can resolve any remaining
references. For example, if you did not identify the TXTLIB that contains
the routines you want to call, you may enter the GLOBAL command
followed by the INCLUDE command:

global txtlib newlib
include print analyze (start

A failure to resolve external references might occur if you have TEXT files
with filenames that are different from either the CSECT names or the entry
names. You must explicitly issue LOAD and INCLUDE commands for these
files.

At execution time, if there are still any unresolved references, their
addresses are all set to 0 by the loader; so any attempt to address them in a
program may result in a program check.

Controlling the CMS Loader

The LOAD and INCLUDE Commands

The INCLUDE command has the same format and option list (with one
exception) as the LOAD command. The main difference is that when you
issue the INCLUDE command the loader tables are not reset. If you issue
two LOAD commands in succession, the second LOAD command cancels the
effect of the first and the pointers to the files loaded are lost.

Conversely, the INCLUDE command, which you must issue when you want
to load additional files into storage, should not be used unless you have just
issued a LOAD command. You may specify as many INCLUDE commands
as necessary following a LOAD command to load files into storage.

68 VM/SP eMS for System Programming

/'

lDGuG~co~)a~u~ ~·)G'(o~UG·'C:1ulnG QJu'~(Jc::[j' !(~~\fJ~~
~ .. -... ---- ... --.. -.. ----.-.. ------.--.---------------------... -----.---.--- --.---... -.. ---. --.. --.--... -.- --... .- ~._-:.~: _.=_~.=-.. ~::_=~=._:.~-:-~-~:-:::~=~ __ =~_:..= ___ ~:'::~J

Loader Control Statements

The LOAD and INCLUDE commands allow you to specify a number of
options. You can:

o Change the entry point to which control is to be passed when execution
begins (RESET option).

o Specify the location in virtual storage at which you want the files to be
loaded (ORIGIN option).

o Control how CMS resolves references and handles duplicate CSECT
names (AUTO, LIBE, and DUP options).

o Clear storage to binary zeros before loading files (CLEAR option).
Otherwise, CMS does not clear user storage.

o Save the relocation information from the text files (RLDSA VE option).
If the RLDSA VE option is not specified on the LOAD and INCLUDE
commands, the relocation information will not be saved for the fi~es
being loaded into storage.

o Save history information from the text files (HIST option). If the HIST
option is not specified on the LOAD or INCLUDE commands, history
information (comments) is not saved for the files being loaded into
storage.

When the LOAD and INCLUDE commands execute, they produce a load
map, indicating the entry points loaded and their virtual storage locations.
You may find this load map useful in debugging your programs. If you do
not specify the NOMAP option, the load map is written onto your A-disk in
a file named LOAD MAP A5. Each time you issue the LOAD command, the
old file LOAD MAP is erased and the new load map replaces it. If you do
not want to produce a load map, specify the NOMAP option.

You can find details about these options under the LOAD command in the
VM/ SP CMS Command Reference.

In addition to the options provided with the LOAD and INCLUDE
commands that assist you in controlling the execution of TEXT files, you
can also use loader control statements. These can be inserted in TEXT
files, using the CMS editor. The loader control statements allow you to:

o Set the location counter to specify the address where the next TEXT file
is to be loaded (SLC statement).

o Modify instructions and constants in a TEXT file, and change the
length of the TEXT file to accommodate modifications (Replace and
Include Control Section statements).

o Change the entry point (ENTRY statement).

Chapter 5. Developing Programs under CMS 69

L .. ___ . ______ . _____ _

• Nullify an external reference so that it does not receive control when it
is called, and you do not receive an error message when it is
encountered (LIBRARY statement).

These statements are also described under the LOAD command in the
VM/ SP eMS Command Reference.

Determining Program Entry Points

When you load a single TEXT file or a TXTLIB member into storage for
execution, the default entry point is the first CSECT name in the object file
loaded. You can start execution at a different entry point by specifying the
entry point on the LOAD (or INCLUDE) command with the RESET option.

load myprog (reset beta

where BETA is the alternate entry poin~ of your program, or you can
specify the ~ntry point on the START command line:

start beta

When you load multiple TEXT files (either explicitly or implicitly by
allowing the loader to resolve external references), you also have the option
of specifying the entry point on the LOAD, INCLUDE, or START command
lines.

If you do not specifically name an entry point, the loader determines the
entry point for you according to the following hierarchy:

1. An entry point specified on the START command

2. The last entry specified with the RESET option on a LOAD or
INCLUDE command

3. The name on the last ENTRY statement that was read

4. The name on the last LDT statement that contained an entry name that
was read

5. The name on the first assembler- or compiler-produced END statement
that was read

6. The first byte of the first control section loaded.

For example, if you load a series of TEXT files that contain no control
statements and do not specify an entry point on the LOAD, INCLUDE, or
START commands, execution begins with the first file that you loaded. If
you want to control the execution of program subroutines, you should be
aware of this hierarchy when you load programs or when you place them in
TXTLIBs.

An area of particular concern is when you issue a dynamic load (with the
OS LINK, LOAD, or XCTL macros) from a program, and you call members

70 VM/SP eMS for System Programming

[)GUG~6~)Duu~ ~J[['(QtJ[iC}uX;)8 o.auuCC]8r/ C~JJ8
L_.:: ~~._~-_ . ____ ._._~. ____ ._n. __________ ... : ~~ =~-=-===~~=--=---====-==..::~=:::~:::= .. ~-- ---.... -------.------.--~--- ----.----- -----...... -.-_-- u._ --.---.-- --- -----,

of CMS TXTLIBs. The CMS loader determines the entry point of the called
program and returns the entry point to your program. If a TXTLIBmember
that you load has a VCON to another TXT LIB member, the LDT card from
the second member may be the last LDT card read by the loader. If this
LDT card specifies the name of the second member, CMS may return that
entry point address to your program rather than the address of the first
member.

Creating Program Modules

When your programs are debugged and tested, you can use the LOAD and
INCLUDE commands, in conjunction with the GENMOD command, to
create program modules. A module is a file whose external references have
been resolved. In CMS, these files must have a filetype of MODULE.

To create a nonrelocatable module file, load the TEXT files or TXTLIB
members into storage and issue the GENMOD command:

load create analyze print
genmod process

The module is generated at the virtual storage address where it is loaded.
In this example, PROCESS is the name of the module file, and it has a
filetype of MODULE. You could use any name; if you use the name of an
existing MODULE file, the old one is replaced.

To execute the program composed of the source files CREATE, ANALYZE,
and PRINT, enter:

process

If PROCESS requires input and/or output files, you have to define these
files before PROCESS can execute properly. If PROCESS expects
arguments passed to it, you can enter them following the MODULE name.
For example,

process testl

If you want to call your own programs or CMS program modules using SVC
202 instructions, you must be careful not to execute a module that uses the
same area of storage that your program occupies. If you want to call a
module that executes at location X'20000', you can load the calling program
at a higher location. For example,

load create (origin 30000

As long as the MODULE file called by CREATE is no longer than X'lOOOO'
bytes, it will not overlay your program.

You can also use the LOAD and GENMOD commands to create a
relocatable CMS module file. However, you must specify the RLDSA VE
option in the LOAD command:

Chapter 5. Developing Programs under CMS 71

[]G\7G~(D[]IDuuS~l [)~1V[~[i18[jlruEi ~ .. %U(~G[' (~~v18
r-----------.-----:~=_=_=~~.-----:-~.-.----------~_:_:_:=. ~ ... :.:~_~:.:.: ... :.:~:::~:.:~:._.=~~_====.~==_ ___ ===::_:_==___:~-=-:-::-~=.==_====._._._ . .J

load progone (RLDSAVE
genmod progtwo

The relocatable CMS module file may now be established as a nucleus
extension by issuing the NUCXLOAD command:

nucxload progtwo

Relocatable CMS module files may also be used with the LOADMOD
command (for example, when issued as a command from the console). No
relocation is performed when the LOADMOD command is used. Relocation
is performed only when loaded by NUCXLOAD.

You can use the LOAD, INCLUDE, and GENMOD commands to create a
module that includes history information (comments) from the text file
used. For example:

load progone (HIST
include progtwo (HIST
genmod

The generated module contains the comments that were in the text files
progone and progtwo.

Note: Many CMS disk-resident command modules execute in the user
program area. That is, if you call a CMS command that runs in the user
program area, you must be certain that it does not overlay your own
program. Some CMS command modules issue the STRINIT macro or were
created using the STR option of the GENMOD command.

Both cause the user area storage pointers to be reset. The reset condition
may cause errors upon return to the original program (for example, when
OS GETMAIN/FREEMAIN macros are issued in the user program).

The CMS commands that execute in the user program area or that reset the
user area storage pointers are identified in the VM/ SP CMS Command
Reference.

The Transient Program Area

To avoid overlaying programs executing in the user program area, you can
generate program modules to run in the CMS transient area, which is a
two-page area of storage reserved for the execution of programs that are
called frequently. Many CMS commands run in this area, which is located
at X'EOOO'. Programs that execute in this area run disabled.

To generate a module to run in the transient area, use the ORIGIN TRANS
option when you load the TEXT file into storage, then issue the GENMOD
command. For example,

load myprog (origin trans
genmod setup (str

72 VM/SP eMS for System Programming

L~_' .--.- -.. -----=:~.~: ___________________ .. __ ._ .. ___ .. _._. ______ . ____ .. :_ ... _ ... __ ... -. ________ "" _.:: __________ ~ __ : ___________ ~ __ ~_:_. ____ .~_~-~_:...._=_~~=:=.~.:J

Note: If a program running in the user area calls a transient routine in
which a module was generated using the GENMOD command with the STR
option, the user area storage pointers are reset. This reset condition could
cause errors upon return to the original program (for example, when OS
GETMAIN/FREEMAIN macros are issued in the user program).

The two restrictions placed on command modules executing in the transient
area are:

1. They may have a maximum size of 8192 bytes (the size of the transient
area).

2. They must be serially reusable. When a program is called by an SVC
202 and if it is already loaded into the transient area, it is not reloaded.

The CMS commands that execute in the transient area are identified in the
VM/SP CMS Command Reference.

Creating EXEC Procedures

Depending on how you code your programs and EXECs, you can choose
whether or not they will be recognized for translation into other languages.
CMS only recognizes translations for commands entered from the command
line (or with ADDRESS CMS from REXX or &PRESUME
&SUBCOMMAND CMS from EXEC 2). CMS does not translate your
command name or keywords if you SET TRANSLATE OFF or if you invoke
the command from another program using SVC 202 (or with ADDRESS
COMMAND from REXX or &PRESUME &COMMAND CMS from EXEC 2).
For more information on command translation, refer to "Chapter 7.
Developing Commands and Message Files" on page 113.

During your program development and testing cycle, you may want to
create EXEC procedures to contain sequences of CMS commands that you
execute frequently. For example, if you need a number of MACLIBs,
TXTLIBs, and file definitions to execute a particular program, you might
have an EXEC procedure as follows:

Chapter 5. Developing Programs under CMS 73

L ___________________ . _______ ~. __________ . _______________________ .. -::~~ ___ =_===~_:::=J

/* EXEC to set up environment to run program TESTA */

signal on error
'GLOBAL MACLIB TESTLIB OSMACRO OSMACR01'
'ASSEMBLE TESTA'
'PRINT TESTA "LISTING'
'GLOBAL TXTLIB TESTLIB PROGLIB'
'ACCESS 200 E'
push 'OS.TEST3.STREAM.BETA'
'FILEDEF INDD1 E DSN ?'
'FILEDEF INDD2 READER'
'FILEDEF OUTFILE DISK TEST DATA A1'
signal off error
'LOAD TESTA (START'
select

when rc = 100 then do

end
when rc

end
otherwise

exit rc
end

Error:

200 then do

say 'Error occurred on line' sigl':' sourceline(sigl)
exit rc

The "signal on error" control statement in the EXEC procedure ensures
that if an error occurs during any part of the EXEC, the remainder of the
EXEC does not execute, and the "Error:" displays the line number where
the error occurred as well as the actual command which gave the error.

Note: For the FILEDEF command entered with the DSN ? operand, you
must stack the response (using "push") before issuing the FILEDEF
command.

When your program is finished executing, the REXX special variable RC
indicates the contents of general register 15 at the time the program exited
(the "Return Code"). You can use this value to perform additional steps in
your EXEC procedure. Additional steps are indicated in the preceding
example by ellipses.

74 VM/SP eMS for System Programming

~JGt7(3~([)~")auutJ ~·Ju·OUu·8u-lru8 QJu"u([JGu J G~U'JS
c-----------------· ... ---·--·_----·--------.-·----··-.-.-.------------.-----. ---.--.. ---_-._-.--_" __ _ - .--.. - ----------.----.::.:::1

eMS Macro Instruciions

There are a number of assembler language macros distributed with the
CMS system that you can use when you are writing programs to execute in
the CMS environment. These macros are in the macro libraries CMSLIB
MACLIB and DMSSP MACLIB, which are normally located on the system
disk.

o CMSLIB MACLIB contains macros from VM/370.
o DMSSP MACLIB contains macros that are new or changed in VM/SP.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP
should precede CMSLIB in the search order.

There are macros to manipulate CMS disk files, to handle terminal
communications, to manipulate unit record and tape input/output, and to
trap interruptions. These macros are discussed in general terms here. For
complete format descriptions, see the VMj SP eMS Macros and Functions
Reference.

Disk File Manipulation

Disk files are described in CMS by means of a file system control block
(FSCB). The CMS macro instructions that manipulate disk files use FSCBs
to identify and describe the files. When you want to manipulate a CMS file,
you can refer to the file by its file identifier, specifying 'filename filetype
filemode' in quotation marks, or you can refer to the FSCB for the file,
specifying FSCB = fscb, where fscb is the label on an FSCB macro.

To establish an FSCB for a file, use the FSCB macro instruction specifying
a file identifier. For example,

INFILE FSCB 'INPUT TEST AI'

You can also provide, on the FSCB macro instruction, descriptive
information to be used by the input and output macros. If you do not code
an FSCB macro instruction for a file, an FSCB is created in-line (following
the macro instruction) when you code an FSREAD, FSWRITE, or FSOPEN
macro instruction.

The format of an FSCB and a description of each of the fields are listed
below.

Label Description
FSCBCOMM DC CL8' ,

File system command

Figure 10 (Part 1 of 2). FSCB Format

Chapter 5. Developing Programs under CMS 75

L ___________________________________ _ _._ .. _ .. J

Label Description
FSCBFN DC CL8' ,

Filename
FSCBFT DC CL8' ,

Filetype
FSCBFM DC CL2' ,

Filemode
FSCBITNO DC H'O' Relative record number (RECNO)
FSCBBUFF DC A'O' Address of buffer (BUFFER)
FSCBSIZE DC F'O' Number of bytes to read or write

(BSIZE)
FSCBFV DC CL2'F' Record format - F or V (RECFM)
FSCBFLG EQU FSCBFV+l Flag byte
FSCBNOIT DC H'l' Number of records to read or

write (NOREC)
FSCBNORD DC AL4(O) Number of bytes actually read
FSCBAITN DC AL4(O) Extended FSCB relative record

number
FSCBANIT DC AL4(l) Extended FSCB relative number

of records
FSCBWPTR DC AL4(O) Extended FSCB relative write

pointer
FSCBRPTR DC AL4(O) Extended FSCB relative read

pointer

Figure 10 (Part 2 of 2). FSCB Format

The FSCBAITN, FSCBANIT, FSCBWPTR, and FSCBRPTR fields are only
generated in the FSCB when the extended format FSCB is requested
(FORM = E is coded on the FSCB macro instruction). In this case, the
FSCBITNO and FSCBNOIT fields are reserved fields. Extended format
FSCBs must be used to manipulate files larger than 65,533 items. The
labels shown above are not generated by the FSCB macro. To reference
fields within the FSCB by these labels, you must use the FSCBD macro
instruction to generate a DSECT.

FSCBCOMM: When the FSCBFN, FSCBFT, and FSCBFM fields are filled
in, you can fill in the FSCBCOMM field with the name of a CMS command
and use the FSCB as a parameter list for an SVC 202 instruction. (You
must place a delimiter to mark the end of the command line.)

FSCBFN, FSCBFT, FSCBFM: The filename, filetype, and filemode fields
identify the CMS file to be read or written. You can code the fileid on a
macro line in the format 'filename filetype filemode', or you can use register
notation. If you use register notation, the register you specify must point
to an IS-byte field in the format:

FILEID DC
DC
DC

76 VM/SP eMS for System Programming

CL8'filename'
CL8'filetype'
CL2'filemode'

[Dc:rJG~([)~JDuuO l")u~V&Ju'8ulJuG GJDucJeu' G~v'JS
(~=-=~~:~--=-=~=~=--=~~.=--.=-=:~.:.-:..:~~:~--==-~--=-=.::~~==--==:~ .. _-- .. ---.. _- --.---'

The fileid must be specified either in the FSCB for a file or on the FSREAD,
FSWRITE, FSOPEN, or FSERASE macro instruction that references the
file.

FSCBITNO: For an FSCB without the FORM = E option, the record or
item number indicates the relative record number of the next record to be
read or written. It can be changed with the RECNO option. The default
value for this field is O. When you are reading a file, a 0 indicates that
records are to be read sequentially beginning with the first record in the
file. When you are writing a file and the file already exist, a 0 indicates
that records are to be written sequentially beginning at the first record
following the end of the file. If the file is a new file, begin writing at record
1.

For an FSCB generated with the FORM = E option, the FSCBAITN field
contains the record or item number. The FSCBITNO field is reserved.

Whenever you read discontiguous files in CMS (that is, files with missing
records), the input buffer will be filled with the appropriate number of
bytes. Be aware that the flag byte in the FSCB may not reflect whether the
input buffer contains generated data items from RDBUF.

FSCBB UFF: The buffer address, specified in the BUFFER option,
indicates the label of the buffer where the record is to be written from or
where the record is to be read into. You should always supply a buffer
large enough to accommodate the longest record you expect to read or
write. This field must be specified either in the FSCB or on the FSREAD or
FSWRITE macro instruction.

FSCBSIZE: This field indicates the number of bytes that are read or
written with each read or write operation. The default value is O. If the
buffer that you use represents the full length of the records you are going
to be reading or writing, you can use the BSIZE option to set this field
equal to your buffer length. When you are writing variable-length records,
use the BSIZE operand to indicate the length of each record you write.
This field must be specified.

FSCBFV: This two-character field indicates the record format (RECFM) of
the file. The default value is F (fixed).

FSCBFLG: The flag byte is X'20' indicating an extended FSCB is
generated when the FORM = E option is coded on the FSCB macro
instruction.

FSCBNOIT: For an FSCB without the FORM = E option, this field
contains the number of whole records to be read or written in each read or
write operation. You can use the NOREC option with the BSIZE option to
block and deblock records.

For an FSCB generated with the FORM = E option, the FSCBANIT field
contains the number of whole records to be read or written. The
FSCBNOIT field is reserved.

Chapter 5. Developing Programs under CMS 77

FSCBNORD: Following a read operation, this field contains the number
of bytes actually read, so if you are reading a variable-length file, you can
determine the size of the last record read. The FSREAD macro instruction
places the information from this field into register O.

FSCBAITN: The alternate record or item number indicates the 'relative
record number of the next record to be read or written in an extended FSCB
format. See the description of the FSCBITNO field for the usage of this
field.

FSCBANIT: This field contains the alternate number of whole records in
an extended FSCB format. See the description of the FSCBNOIT field for
the usage of this field.

FSCB WPTR: The FSPOINT macro instruction uses this field to contain
the alternate write pointer for an extended FSCB during a POINT
operation.

FSCBRPTR: The FSPOINT macro instruction uses this field to contain
the alternate read pointer for an extended FSCB during a POINT operation.

Using the File System Control Block (FSCB)

The following example shows you how to code an FSCB macro instruction
to define various file and buffer characteristics and how to use the same
FSCB to refer to different files:

COMMON
SHARE

FSREAD 'INPUT FILE Al' ,FSCB=COMMON,FORM=E
FSWRITE 'OUTPUT FILE Al',FSCB=COMMON,FORM=E

FSCB BUFFER=SHARE,RECFM=V,BSIZE=200,FORM=E
DS CL200

In the above example, the fileid specifications on the FSREAD and
FSWRITE macro instructions modify the FSCB at the label COMMON each
time a read or write operation is performed. You can also modify an FSCB
directly by referring to fields by a displacement off the beginning of the
FSCB. For example,

MVC FSCB+8,=CL8'NEWNAME'

moves the name NEWNAME into the filename field of the FSCB at the
label FSCBFN.

As an alternative, you can use the FSCBD macro instruction to generate a
DSECT and refer to the labels in the DSECT to modify the FSCB. For
example,

78 VM/SP eMS for System Programming

· '---'-"'--'~~

LA RS,INFSCB
USING FSCBD,RS

MVC FSCBFN,NEWNAME

INFSCB FSCB 'INPUT TEST AI' , FORM=E
NEWNAME DC CL8'OUTPUT'

FSCBD

In the above example, the MVC instruction places the filename OUTPUT
into the FSCBFN (filename) field of the FSCB. The next time this FSCB is
referenced, the file OUTPUT TEST is the file that is manipulated.

Reading and Writing eMS Disk Files

CMS disk files are sequential files. When you use CMS macros to read and
write these files, you can access them sequentially with the FSREAD and
FSWRITE macros. However, you may also refer to records in a CMS file by
their relative record numbers. So you can, in effect, access records using a
direct access method.

If you know the record you want to read or write, you can specify the
RECNO option on the FSCB macro instruction or on the FSOPEN,
FSREAD, or FSWRITE macro instructions. When you use the RECNO
option on the FSCB macro instruction, you must specify the exact record
number. For the FSOPEN, FSREAD, or FSWRITE macro instructions, you
may either specify the exact record number:

WRITE FSWRITE FSCB=WFSCB,RECNO=IO,FORM=E

or specify the register containing the record to be read:

WRITE FSWRITE FSCB=WFSCB,RECNO=(S),FORM=E

When you want to access files sequentially, the FSCBITNO field of the
FSCB must be 0 for an FSCB without the FORM = E option. For an
extended FSCB, the FSCBAITN field must be o. This is the default value.
When you are reading files with the FSREAD macro instruction, reading
begins with record number 1. When you are writing records to an existing
file with the FSWRITE macro, writing begins following the last record in
the file.

To begin reading or writing files sequentially beginning at a specific record
number, you must specify the RECNO option twice: once to specify the
relative record number where you want to begin reading, and a second time
to specify RECNO = 0 so reading or writing will continue sequentially
beginning after the record just read or written. You can specify the
RECNO option on the FSREAD or FSWRITE macro instruction, or you
may change the FSCBITNO or FSCBAITN field in the FSCB for the file, as
necessary for the FSCB form.

For example, to read the first record and then the 50th record of a file, you
could code the following:

Chapter 5. Developing Programs under CMS 79

READl

READ50

RFSCB
WFSCB
COMMON

.. ___________ . __ ._._. __ .. ___ . __ . ____ ._._ .. _ .. ____ ~_._.~ ______ ... __ ... __ . ______ ._ .. ___ ._J

FSREAD FSCB=RFSCB,FORM=E
FSWRITE FSCB=WFSCB,FORM=E
LA 5,RFSCB
USING FSCBD,5
MVC FSCBAITN,=F'50'
FSREAD FSCB=RFSCB,FORM=E
FSWRITE FSCB=WFSCB,FORM=E

FSCB 'INPUT FILE Al',BUFFER=COMMON,BSIZE=120,FORM=E
FSCB 'OUTPUT FILE Al' ,BUFFER=COMMON,BSIZE=120,FORM=E
OS CL120

FSCBD

In this example, the statements at the label READI write record I from the
file INPUT FILE Al to the file OUTPUT FILE AI. Then, using the DSECT
generated by the FSCBD macro, the FSCBITNO field is changed because an
extended FSCB is being used.

FSCBAITN field is changed because an extended FSCB is being used and
record 50 is read from the input file and written into the output file.

The "update-in-place" facility allows you to write blocks back to their
previous location on disk. The "update-in-place" attribute of a CMS file is
indicated by the filemode number 6.

Reading and Writing Variable Length Records

When you read or write variable-length records, you must specify
RECFM = V either in the FSCB for the file or on the FSWRITE or FSREAD
macro instruction. The read/write buffer should be large enough to
accommodate the largest record you are going to read or write.

To write variable-length records, use the BSIZE = option on the FSWRITE
macro instruction to indicate the record length for each record you write.
To read variable-length records, register 0 contains, on return from
FSREAD, the length of the record read.

The following example shows how you could read and write a
variable-length file:

READ FSREAD 'DATA CHECK Al' ,BUFFER=SHARE,BSIZE=130,
ERROR=OUT,FORM=E

FSWRITE 'COPY DATA Al' ,BUFFER=SHARE,BSIZE=(O),FORM=E
B READ

When you update files of variable-length records, the replacement record
must be the same length as the origin.al record. An attempt to write a
record shorter or longer than the original record results in truncation of
the file at the specified record number. No error return code is given.

80 VM/SP eMS for System Programming

r.-.u ----.... ~ .. -... -... -.----

End-ol-File Checldng

Opening and Closing Files

You can specify the ERROR = operand with the FSREAD or FSWRITE
macro instruction so an error handling routine receives control in case of
an error. In CMS, when an end of file occurs during a read request, it is
treated as an error condition. The return code is always 12. If you specify
an error handling routine on the FSREAD macro instruction, the first thing
this routine can do is check for a 12 in register 15.

Your error handling routine may also check for other types of errors. See
the macro description in the VMjSP eMS Macros and Functions Reference
for details on the possible errors and the associated return codes.

Usually, CMS opens a file whenever an FSREAD or FSWRITE macro
instruction is issued for the file. When control returns to CMS from a
calling program, all files accidentally left open are closed by CMS.
Therefore, you do not have to close files at the end of a program.

For a minidisk in 512-, lK-, 2K-, or 4K-byte block format, a file may be open
for concurrent read and write operations and an FSCLOSE need not be
issued when switching from reading to writing, or vice versa. For example:

LA 3,2

READ FSREAD FSCB=UPDATE,RECNO=(3),ERROR=READERR,FORM=E

FSWRITE FSCB=UPDATE,RECNO=(3) ,ERROR=WRITERR,FORM=E
LA 3,1(3)
B READ

UPDATE FSCB 'UPDATE FILE A1' ,BUFFER=BUF1,BSIZE=80,FORM=E

When you are running long running applications or running disconnected,
include several FSCLOSE macros to each file referenced. This insures that
changes to the file are reflected on the disk in the event that the user is
forced off the system. This consideration is important when running on
512-, lK-, 2K-, or 4K-byte block disks since the disk directory is not updated
until all of the files on the disk are closed.

If you want to read and write records from the same file on an 800-byte
block format minidisk, you must issue an FSCLOSE macro instruction to
close the file whenever you switch from reading to writing. For example:

Chapter 5. Developing Programs unde'r CMS 81

Creating New Files

READ
LA 3,2
FSREAD FSCB=UPDATE,RECNO=(3),ERROR=READERR
FSCLOSE FSCB=UPDATE

FSWRITE FSCB=UPDATE,RECNO=(3),ERROR=WRITERR
FSCLOSE FSCB=UPDATE
LA 3,1(3)
B READ

UPDATE FSCB 'UPDATE FILE Al' ,BUFFER=BUF1,BSIZE=80

To execute a loop to read, update, and rewrite records, you must read a
record, close the file, write a record, close the file, and so on. Since closing
a file repositions the read pointer to the beginning of the file and the write
pointer at the end of the file, you must specify the relative record number
(RECNO) for each reaq and write operation. In the above example, register
3 is used to contain the relative record number. It is initialized to begin
reading with the second record in the file and is increased by one following
each write operation.

When you use an EXEC to execute a program to read or write a file, the file
is not closed by CMS until the EXEC completes execution. Therefore, if
you read or write the same file more than once during the EXEC procedure,
you must use an FSCLOSE macro instruction to close the file after using it
in each program, or you must use the FSOPEN macro instruction to open it
before each use. Otherwise, the read or write pointer is positioned as it was
when the previous program completed execution.

When you want to begin writing a new file using CMS data management
macros, there are two ways to ensure that the file you want to create does
not already exist. One way is to issue the FSST ATE macro instruction to
verify the existence of the file.

A second way to ensure that a file does not already exist is to issue an
FSERASE macro instruction to erase the file. If the file does not exist,
register 15 returns with a code of 28. If the file does exist, it is erased. See
Figure lIon page 83 for an illustration of a sample program using CMS
data management macros.

82 VM/SP eMS for System Programming

[JG~JG~([D~3au1[J ~)u'O[Jr/8Uliu9 [~Ju'u(JGu~ C~JS
c --.------------.-----.. ---- .. --- -.... -.-.-.-.-.- . --.-- ---.-- -.---.-----.---.------.-.-.. ---.. -.. ~~.-.-.--.-------._=_----------------.---=.--------------1

LINE SOURCE STATEMENT

BEGIN CSECT
PRINT NOGEN
USING *,12 ESTABLISH ADDRESSABILITY
LR 12,15
ST 14,SAVE
LA 2,8(,1) R2=ADDR OF INPUT FILEID IN PLIST
LA 3,32(,1) R3=ADDR OF OUTPUT FILEID IN PLIST

* DETERMINE IF INPUT FILE EXISTS
FSSTATE (2),ERROR=ERR1,FORM=E

*
* READ A RECORD FROM INPUT FILE AND WRITE ON OUTPUT FILE
RD FSREAD (2),ERROR=EOF,BUFFER=BUFF1,BSIZE=80,FORM=E

FSWRITE (3),ERROR=ERR2,BUFFER=BUFF1,BSIZE=80,FORM=E
B RD LOOP BACK FOR NEXT RECORD

* * COME HERE IF ERROR READING INPUT FILE
EOF C 15,=F'12' END OF FILE ? 4

BNE ERR3 ERROR IF NOT
LA 15,0 ALL O.K. - ZERO OUT R15
B EXIT GO EXIT

* IF INPUT FILE DOES NOT EXIST
ERR1 WRTERM 'FILE NOT FOUND' ,EDIT=YES

B EXIT
*
* IF ERROR WRITING FILE
ERR2 LR 10,15 SAVE RET CODE IN REG 10 5

2

LINEDIT TEXT='ERROR CODE IN WRITING FILE' ,SUB=(DEC,(10))
B EXIT

*
* IF READING ERROR WAS NOT NORMAL END OF FILE
ERR3 LR 10,15 SAVE RET CODE IN REG 10 5

LINEDIT TEXT='ERROR CODE IN READING FILE',SUB=(DEC,(10))·
*
EXIT L 14,SAVE LOAD RETURN ADDRESS

BR 14 RETURN TO CALLER
*
BUFF1 DS CL80
SAVE DS F

END

Figure 11 (Part 1 of 2). A Sample Listing of a Program that Uses eMS Macros

Chapter 5. Developing Programs unde-r CMS 83

L. _____ . ____ . __ . ___ . ______ ... __ _._ .. · _ _ J

Notes:

The program might be invoked with a parameter list in the format: progname INPUT FILE
Al OUTPUT FILE AI. This line is placed in a parameter list by CMS routines and addressed
by register 1 (see note 2).

2 The parameter list is a series of doublewords, each containing one of the words entered on
the command line. Thus, 8 bytes past register 1 is the beginning of the input fileid. 24 bytes
beyond that is the beginning of the second fileid.

3 The FSREAD and FSWRITE macros cause the files to be opened. No open macro is necessary.
CMS routines close all open files when a program completes execution (except CMS EXEC
files).

4 The return code in register 15 is tested for the value 12, indicating an end-of-file condition. If
it is the end of the file, the program exits. Otherwise, it writes an error message.

The dots in the LINEDIT macro are substituted, during execution, with the decimal value in
register 10. .

Figure 11 (Part 2 of 2). A Sample Listing of a Program that Uses eMS Macros

Terminal Communications

There are four CMS macros you can use to write interactive,
terminal-oriented programs. They are RDTERM, WRTERM, LINEDIT, and
WAITT. RDTERM and WRTERM only require a read/write buffer for
sending and receiving lines from the terminal. The third, LINEDIT, has a
substitution and translation capability.

When you use the WRTERM macro to write a line to your terminal you can
specify the actual text line in the macro instruction, for example:

DISPLAY WRTERM 'GOOD MORNING'

You can also specify the message text by referring to a buffer that contains
the message.

The RDTERM macro accepts a line from the terminal and reads it into a
buffer you specify. You could use the RDTERM and WRTERM macros
together, as follows:

WRITE
READ

REWRITE

BUFFER

WRTERM 'ENTER LINE'
RDTERM BUFFER
LR 3,0
WRTERM BUFFER, (3)

DS CL130

84 VM/SP eMS for System Programming

UJGUG~(D~)DuuCJ ~)u'ogG'~]U'~lS rr.~uue]G[i· (GWJS
(- -- - - -_. -. --- --_.- _. -.--.-- --_. -:::: ---------... --------- ---- ---_.- _._- .. -.--.. -~. ----- -_.- -- -.-==-~~-.---... -.- -._._ .. _._- ----_._.- -_._-_._---_._._.---_ .. _-_. __ ... _.- ---.. -- -_._-----_._-_. _._.- .--~-]

In this example, the WRTERM macro results in a prompting message. Then
the RDTERM macro accepts a line from the terminal and places it in the
buffer BUFFER. The length of the line read, contained in register 0 on
return from the RDTERM macro, is saved in register 3. When you specify a
buffer address on the WRTERM macro instruction, you must specify the
length of the line to be written. Here, register notation is used to indicate
that the length is contained in register 3.

The LINEDIT macro converts decimal and hexadecimal data into EBCDIC,
and places the converted value into a specified field in an output line.
There are list and execute forms of the macro instruction, which you can
use in writing reentrant code. Another option allows you to write lines to
the offline printer. The LINEDIT macro is described, with examples, in
VM/SP eMS Macros and Functions Reference. Figure 11 on page 83 shows
how you might use the LINEDIT macro to convert and display CMS return
codes.

The WAITT (wait terminal) macro instruction can help you to synchronize
input and output to the terminal. If you are executing a program that reads
and writes to the terminal frequently, you may want to issue a WAITT
macro instruction to halt execution of the program until all terminal I/O
has completed.

Unit Record and Tape 1/0

Handling Interrupts

CMS provides macros to simplify reading and punching cards (RDCARD
and PUNCHC), and creating printer files (PRINTL). When you use either
the PUNCHC or PRINTL macros to write or punch output files while a
program is executing, you should remember to issue a CLOSE command for
your virtual printer or punch when you are finished. You can do this
either after your program returns control to CMS, by entering:

cp close e

or --

cp close d

or you can set up a parameter list with the command line CP CLOSE E or
CP CLOSE D and issue an SVC 202.

The tape control macros, RDT APE, WRTAPE and T APECTL, can read and
write CMS files from tape, or control the positioning of a tape.

You can set up routines in your programs to handle interruptions caused by .
I/O devices, by SVCs, or by external interruptions using the HNDINT,
HNDSVC, or HNDEXT macro instructions.

With the HNDINT macro instruction, you can specify addresses that are to
receive control when an interruption occurs for a specified device. If the

Chapter 5. Developing Programs under CMS 85

[iJ)G~G~(iJ)[J)Hn1@J ~fi1Q)QW'@rruus MUuC0]en1 ~M§
c _________ . ____________ =-:======-_. _____ . __ . _________ .. _____ ~. ______ _____ .. _______________ ._. ___ . ______ =:::J

WAIT option is used for a device specified in the HNDINT macro ,
instruction, then the interruption handling routine specified for the device
does not receive control until after the W AITD macro instruction is issued
for the device.

You can use the HNDSVC macro instruction to trap supervisor call
instructions of particular numbers, if, for example, you want to perform
some additional function before passing control or you do not want any
SVCs of the specified number to be executed.

The CP EXTERNAL command simulates external interruptions in your
virtual machine; if you want to be able to pass control to a particular
internal routine in the event of an external interruption, you can use the
HNDEXT macro instruction.

System Product Editor Interface to Access Files in Storage

CMS uses the SUBCOM facility to allow a number of CMS commands to
use an XEDIT interface to access files in storage. Applications can read or
write specific records without having to go to disk or use the program stack
to transfer the data to or from XEDIT. This improves performance.

CMS uses the XEDIT interface for processing the FILELIST, HELP,
MACLIST, PEEK, and SENDFILE commands. The interface is invoked by
specifying the XEDIT option on the LISTFILE, MACLIB, or NAMEFIND
commands. This option may only be specified from the XEDIT
environment.

When using this interface from an application program, only the extended
parameter list can be used, and the high-order byte of of register 1 must
contain X'02' to indicate SUBCOM is being used.

The application can invoke this interface via SVC 202 or via a BALR
instruction. Because XEDIT is a nucleus-resident routine, other
nucleus-resident routines can branch directly to it while routines that do
not reside in the nucleus use SVC linkage. When using an SVC 202,
register 1 must point to the FSCB where the name of the routine being
invoked is the first token. The high-order byte of register 1 must also be
X'02'. When usingBALR, the calling program can determine the entry
point it wants by using SUBCOM. In this case, register 1 points to the
FSCB and register 2 points to the SCBLOCK. The address of the the
SCBLOCK has been returned from SUBCOM.

The routines available, their entry point names, and error return codes are:

o DMSXFLST - This routine returns the characteristics of a file (RECFM,
LRECL, etc). It also ensures that the file is in the XEDIT ring. The
return codes are:

o File is in the XEDIT ring
24 Incomplete fileid specified

86 VM/SP eMS for System Programming

[~~GU(:;~C)~JUur~~J lJu1tDOu"c:lu'ul1S llJu!)[JSG' G~uJS
c--_·_· __ ·· __ ·_··· __ ··::. _ -............. --_._._._ _ ... -. __ -.. :..-=:~~=~:==-==::.~:~::.===:-=:..:~==-::.=::.::.:.===~~===-=~~.=~.=:-:-.=J

28 File is not in the XEDIT ring

Note: Return codes are similar to those for EST ATE.

• DMSXFLRD - This routine transfers one record from XEDIT storage to
the calling program. If RECFM = F, it may transfer more than one
record. The return codes are:

o READ performed
1 File is not in the XEDIT ring
2 Invalid buffer address
5 Number of items equals zero
7 RECFM is not 'F' or 'V'
8 Buffer is too small (records truncated)

11 Number of items is not equal to one for V-file
12 End of file

Note: Return codes are similar to those for FSREAD.

o DMSXFLWR - This routine transfers one record from the calling
program to XEDIT storage. If RECFM = F, it may transfer more than
one record. The return codes are:

o WRITE performed
2 User buffer address equals zero
7 Skip over unwritten records
8 Number of bytes is not specified

11 RECFM is not 'F' or 'V'
13 No more space is available
14 Number of bytes is not integrally divisible by the number of item
15 Item length is not the same as previous
16 RECFM of 'F' or 'V' is not the same as previous
18 Number of items is not equal to one for V-file
28 File is not in the XEDIT ring

Note: Return codes are similar to those for FSWRITE.

o DMSXFLPT - This routine moves the current line pointer to a record
specified by the calling program. If you specify the read and write
pointer as all ones (X'FFFFFFFFX'), the current line pointer is
returned in the FSCB. The return codes are:

o POINT performed
1 File not found
2 Invalid FSCB

Note: Return codes are similar to those for FSPOINT.

When the interface is used, XEDIT determines if a file is in the XEDIT ring
(active in storage) and does the processing required. The files in the XEDIT
ring are always open. New files may be added to the ring with the XEDIT
subcommand. Files in the ring may be closed with the FILE or QUIT
subcommands.

Chapter 5. Developing Programs under CMS 87

The current line pointer serves the function of both the read and write
pointers of the CMS file system. If RECNO = 0 is specified in a call to
DMSXFLRD, the data is transferred to the calling program starting at the
current line pointer. Transfer is stopped when the specified number of lines
has been transferred or when end-of-file is reached. The current line
pointer is advanced by one for each record transferred to the calling
program. If the current line pointer was at the end-of-file when
DMSXFLRD was called, no data is transferred and an end-of-file condition
is returned.

If RECNO = 0 is specified in a call to DMSXFLWR, new records are written
starting at the line pointed to by the current line pointer. These new
records replace any existing records or add new records if at the end-of-file.
The current line pointer is advanced to the line following the last line
written at the end of the operation. Note that writing to a record in the
middle of a V-format file does not result in truncation of the file from that
point as it would in the CMS file system. Truncation (or spilling when SET
SPILL ONIWORD) may occur if the file is in V-format and the LRECL of
the file is less than the length of the record(s) being written. No message is
issued and the return code is o.

eMS Interface for Display Terminals

CMS has an interface allowing it to display large amounts of data in a very
rapid fashion. This interface for 3270 display terminals (also 3138, 3148, and
3158) is much faster and has less overhead than the normal write because it
displays up to 1760 characters in one operation instead of issuing 22
individual writes of 80 characters each (that is, one write per line on a
display terminal). Data displayed in the screen output area with this
interface is not placed in the console spool file.

The console facility provides a CMS macro interface to full-screen I/O that:

o provides screen coordination and
C) provides an architecturally independent I/O interface.

Use the console facility instead of the DIAGNOSE code X'58' interface or
the DISPW macro.

The console facility provides improved usability for writing 3270 I/O
applications. The CONSOLE macro performs I/O operations such as:

• building the channel command word (CCW),
• issuing DIAGNOSE code X'58' or Start I/O (SIO) instruction,
• waiting for the I/O to complete, and
• checking any error status from the device.

Applications must construct a valid 3270 data stream to write to the screen,
and a 3270 data stream is returned when a CONSOLE READ is performed.

88 VM/SP eMS for System Programming

r

lOc:r~e~O[JQJ J[J LJ~\)Uu'(Ju~ruS ~Ju'ilck~GJ (GGtJ~3
. . .. _.- --- ------_ .. __ .. _--_._-- .----- ---. _. __ .- ~-:. ---- --------~:-~---.:-~~~:~- -~-.-:.:..-~-.~~--=:..:::--~:=~--.. ~::.:~~~.=-.~. - -------,

The CONSOLE macro allows programs to open 'paths' to a display device.
A path is a unique name that distinguishes one application from another
and allows the console facility to coordinate the use of the screen. For
example, if an application is writing to the screen, the CONSOLE macro
tells it that another 'path' has updated the screen lastly, and, therefore, the
screen must be reformatted. Because of this, full-screen applications do not
have to rewrite the entire screen every time a write is done.

Screen coordination can be done only for applications using the console
facility. Because some application still issue their own DIAGNOSE code
X'58', you must reformat the screen. This avoids mixing data from two
different applications on the screen. Refer to "The CONSOLE Macro" on
page 90 for more details.

The CONSOLE macro provides the following functions:

o OPEN/CLOSE - Opening and closing a specific path to the console.

o READ/WRITE - Reading and writing buffers that have 3270 data
streams built by the application. In order to write to the screen,
applications must construct a valid 3270 data stream. When a read is
performed, the data is returned in the user's buffer. The CMS console
facility issues the DIAGNOSE code X'58' for the virtual console or a
Start I/O (SIO) for dialed devices, builds the CCW for READ and
WRITE requests, tests conditions after I/O, and gives the result of the
I/O operation to the application.

o EXCP - Performing READ or WRITE I/O operations using CCWs that
applications supply. An application must supply its own CCW if it uses
the EXCP function. This function is intended for use with dialed
devices.

o WAIT - Wait for an I/O interrupt from the console device.

o QUERY - Getting information about the device attributes (DIAGNOSE
code X'24' and DIAGNOSE code X'8C'), or if the path is opened, getting
information about a specific path and its associated device. The user
should provide a buffer for this information and then map the
information using the CQYSECT mapping macro. For information
about the CQYSECT macro, refer to

The four formats of the CONSOLE macro instruction are:

Standard format
It is not reentrant.

List format (MF = L)
Generates a parameter list, but does not generate code to execute
the function. The parameter list is generated in-line and usually
register notation cannot be used.

Chapter 5. Developing Programs under CMS 89

[Q)GnJG~(»[]DuuQJ ru1 (Q)gu1 C}uuuS tDuu(JGu1 CLlfJ8
L __________ .. _____ ._._ .. _.~ _______________ . __ . ______ . __ .. _ .. _. ___ . ____ ... _ ... ______ .. _. ____ . ___ ... ______ .

The CONSOLE Macro

Complex List format (MF = (L,addr[,label]))
Generates a parameter list, but does not generated code to
execute the function. The parameter list is generated in an area
that you specify.

Execute format (MF = (E,addr))
Generates code to execute the function.

Note: For the detailed formats of the CONSOLE macro, see VM/ SP eMS
Macros and Functions Reference.

An Example of Using the Console Facility

Opening a Path

• OPEN a path with the optional BUFFER parameter.

o Get information about the device from the buffer.

o Build a 3270 data stream.

e Issue the CONSOLE WRITE with the EW option.

• Issue the READ with the WAIT option.

o Check the return code.

• If the return code from READ or WRITE is not 0, issue a QUERY to
determine what happened.

• CLOSE the path.

In order to use the CMS console facility for I/O, you must first open a
'path'. You can do this by issuing the OPEN parameter of the CONSOLE
macro.

When you open a path, the console facility allocates storage containing
information about I/O activity for the application. A path entry is
associated with a device when you specify the CONSOLE OPEN parameter.
If the device does not already have paths opened to it, storage is allocated
for a new device entry and any existing device entries are linked to it.

90 VM/SP eMS for System Programming

r-·-·---······ .. · .. --··--·-·-··-------·-·---·-·--·--·---------.-.-------.--.--------.. -.-....... -.-----.--.-.. ----.---.-.-------------]

Querying a Path

You can use the CONSOLE QUERY to obtain information about a path and
its associated device or to obtain information about a virtual device even if
paths are not opened to it. To do this, you must also specify the BUFFER
parameter. You can map the information returned by the CQYSECT macro.
(See VM/SP Data Areas and Control Block Logic Volume 2 (CMS) for more
information.) CQYSECT contains length equates that an application can
use to obtain the size buffer needed.

Initially, when an application opens a path, it can specify a buffer that
contains path and device information and is mapped by CQYSECT. This
information is very useful at initialization time since it contains
DIAGNOSE code X'24' information, and, depending on the device, it
contains DIAGNOSE code X'8C' information. Then, the application can
obtain the device type and characteristics and can use the appropriate
routines to build data streams.

Writing to and Reading from a Path

The console facility keeps track of the application that owns the screen by
keeping a field in the device entry (CDEV) for the address of the path entry
that performed the last I/O operation. If one application currently owns the
screen and another application wants to perform I/O, the second application
must gain control of the screen by reformatting it with an erase/write (EW),
an erase/write alternate (EWA), or, in some cases, a write structure field
(WSF). Therefore, applications should begin I/O processing with one of
these operations.

Warning: Until all applications use the console facility instead of
issuing a DIAGNOSE code X'58', there is a possibility of seeing data
from two different applications mixed on the screen. An erase/write
(EW) must be issued so that the current application can gain total
ownership of the screen. If CP breaks in and writes a screen or if
another application using the console facility writes a screen, the
console facility can detect this situation and issues return code 32. If
you get return code 32, issue an erase/write or an erase/write alternate.
However, the console facility can not always detect who wrote to the
screen when applications modify PSW s in low storage and issue their
own DIAGNOSE X'58'. In this case, if you get mixed data on the
screen, you will have to press the CLEAR key or issue a command that
causes an erase/write. The VMFCLEAR command can be issued by an
application before exiting their program to accomplish this. Another
alternative for applications running in full-screen CMS would be to
write an EXEC to issue a SET FULLSCREEN SUSPEND command,
then invoke their full-screen program, and when processing completes
they can resume fullscreen CMS by issuing SET FULLSCREEN
RESUME.

Most full-screen applications will wait for input and then read the data. To
accomplish this, you can issue a CONSOLE READ with the WAIT option,
o~ you can issue a CONSOLE WAIT followed by a CONSOLE READ. The

Chapter 5. Developing Programs under CMS 91

[]GtlG~(iJ)rr]DrUQJ rro~~~@~UuS (LBUUC)JG~1 C~~8
c _____________________________________ _ _______________________ .--1

1/0 Advantages

Building Your Own CCW

CONSOLE READ with the WAIT option has a performance advantage
because it issues only one Supervisor Call (SVC) instead of two.

If you receive a return code 1 on an I/O operation, you should issue an
explicit WAIT. Do not specify a READ with the WAIT option. A
disconnect is detected before any READ options are checked. When you
specify a READ with the WAIT option, a WAIT is not issued and control is
immediately returned to the application with return code 1.

If an application performs linemode I/O or calls routines that perform
linemode I/O, it should issue a CMS WAITT macro to coordinate linemode
and full-screen I/O. This allows the I/O to complete before issuing any
console full-screen operations.

Applications can become much less dependent on low-level device
architecture by using the console facility. In the past, applications not only
had to construct data streams, but they had to build the channel command
word (CCW), determine the type of device (dialed or virtual console) and set
up for DIAGNOSE code X'58' or 3270 SIO, and check the channel status
word (CSW) to determine what action should be taken.

In addition, the applications would have to change whenever new devices
were introduced.

With the console facility, the application only needs to:

o build a data stream,

o issue a CONSOLE call, and

• check a return code.

The CSW error checking and retrying of I/O is much more elaborate in the
console facility than what many applications do today. This gives
applications a better chance for completing a successful I/O options.

The CONSOLE EXCP parameter allows applications that still want to build
their own CCWs to do so. However, no CCW error checking is performed
so the CONSOLE module cannot determine the type of I/O requested and
cannot coordinate the use of the screen as effectively as with the READ or
WRITE functions.

The EXCP parameter is not recommended for the virtual console since the
application has to know the internal I/O processing performed in the
CONSOLE module. However, if you use this function carefully, you can
chain several CCWs. The first CCW in the string should be an EW, EWA,
or WSF to reformat and to gain control of the screen. ,/

92 VM/SP eMS for System Programming

· -.- . __ . - -------_. ---_. __ .. _.- _._._--_. __ .. _._-._ .. -_ --- -~~::-]

Completing an 1/0 Operation

Closing a Path

The DISPW Macro

When the console facility returns control to the application after an I/O
operation, the application can check the return code and continue
processing. If more information is needed about the I/O just performed, a
CONSOLE QUERY can be issued. The CONSOLE QUERY shows the CSW
after I/O, the sense data (if any), the last CCW executed, and all the device
information obtained by DIAGNOSE code X'24' and DIAGNOSE code X'8C'.

Before exiting your program, paths that are no longer needed should be
closed. Close processing releases storage for the path entry. If this was the
only path opened to the associated device, the device entry storage is
released as well. When releasing a device entry, a CP RESET command is
only issued for dialed devices.

Although the CONSOLE macro is the preferred interface for full-screen I/O,
the DISPW macro may be used to generate a calling sequence for the CMS
display terminal interface module, DMSGIO. DMSGIO creates a channel
program and issues a DIAGNOSE code X'58' to display the data. DMSGIO
is a TEXT file that must be loaded to use DISPW.

The format of the CMS DISPW macro is:

[label] DISPW bufad
[,LINE = {~ }][,BYTES = {;~;; } 1
[,ERASE = YES]

[,CANCEL=YES]

where:

label
is an optional macro statement label.

bufad
is the address of a buffer containing the data to be written to the
display terminal.

LINE= {~}

is the number of the line, 0 to 23, on the display terminal that is to be
written. Line number 0 is the default.

Chapter 5. Developing Programs under CMS 93

[D)Gt7G;~(][~)O~u§~ [JL"(])[jr@~uuD L~ullCJ0[j' (~rJJ8
L=-:"~==-~_~=~_~=~:::' _________ . __ . ____ ._ .. "._._,, __ . __ ._,,_._. __ " __ ,,._"" __ .. ~._.,, __ ._._. __ .===-.-__ =====_==-_=~-=---==-=-_._._. __ ._._ ... _ .. ____ .]

BYTES = {nnnn}
1760

is the number of bytes (0 to 1760) to be written on the display
terminal. 1760 bytes is the default.

ERASE=YES
specifies that the display screen is to be erased before the current data
is written. The screen is erased regardless of the line or number of
bytes to be displayed. Specifying ERASE = YES causes the screen to
go into "MORE" status.

CANCEL=YES
causes the CANCEL operation to be performed. The output area is
erased.

Note: It is advisable for the user to save registers before issuing the
DISPW macro and to restore them after the macro because the modules
called by the DISPW macro do not save the user's registers. The DISPW
macro saves and restores register 13.

94 VM/SP eMS for System Programming

1-------------------.. ---.--- .. --... -.----. -.--.. -.... -- ----... -----.----. ----.-- ---.-.-.-.---' .-.- .. -.---.----- -.--.------ -----------.. ----.------.--.---.- .. --.-- .. -.-.-.- .. -----.. --------. --------.. ---.-----

L (c:ln~ri'n~i (~, IU\p(~~irfri~1 ~(o\o,;(c(:, 1:'\i(oI2';~fii~~, IU~::-flii~1 (CllVil~

As you test and modify programs, you may want to keep backup copies of
the source programs. Then you can always return to a certain level of a
program in case you have an error. eMS provides several approaches to
the problem of program backup. The method you choose depends on the
complexity of your project, the changes you want to make, and the size of
your programs.

The simplest method is to make a copy of the current source file under a
new name. You can do this using either the COPYFILE command or the
editor.

The UPDATE Philosophy

While the procedures outlined above for modifying programs are suitable
for many applications, they may not be adequate in a situation where
several programmers are applying changes to the same source code. These
procedures also have the drawback of not providing you with a record of
what has been changed. After using the editor, you do not have a recordof
the lines that have been deleted, added, replaced, and so on, unless you
manually add comments to the code, insert special characters in the
serialization column, or use some technique that records program activity.

The UPDATE command and the XEDIT UPDATE option provide a way for
you to modify a source program without affecting the original. UPDATE
produces an update log, indicating the changes that have been made. Both
UPDATE and XEDIT have the capability of combining multiple updates at
one time, so that changes made by different programmers or changes made
at different times can be combined into a single output file.

The UPDATE command and the XEDIT UPDATE option are the basic
elements of the VM/SP updating scheme. Although the input filetypes used
by the UPDATE command default to ASSEMBLE file characteristics,
neither the UPDATE command nor the XEDIT UPDATE option is limited
to assembler language programs. Also, is it not limited to system
programming applications. You can use it to modify and update any
fixed-length, 80-character file that does not have data in columns 73
through 80.

Chapter 6. Updating Source Programs Using CMS 95

L ._ _. ____ . ____ .. __ ._. _____ .. ___ .. _ .. __ . ___ .. ____ _._ .. ___ ._._ ___ .. _._. ___ ._._ .. _ _ .. _____ . __ . ___ ., ______ ._, __ :~==_:_..::.=_~_=:... ________ . ___________ . ____ ., .. _, ____ . __ .. ___ . _________ . __ . ___ 1

Update Files

Creating an Update File

A simple update involves two input files:

o The source file, which is the program you want to update

o An update file, usually created by XEDIT, containing control
statements describing the changes you want to make.

The control statement file usually has a filetype of UPDATE. For
convenience, you can give it the same filename as your source file. For
example, if you want to update the file SAMPLE ASSEMBLE, you would
create a file named SAMPLE UPDATE using the XEDIT UPDATE option.
To apply the changes in the update file, you issue the command:

update sample

The default values used by the UPDATE command are filetypes of
ASSEMBLE and UPDATE for the source and update files, respectively. If
you are updating a COBOL source program named READY COBOL with an
update file named READY UPDATE, you would issue the command:

update ready cobol a ready update a

After an UPDATE command completes processing, the input files are not
changed; two new files are created. One of them contains the updated
source file, with a filename that is the same as the original source file but
preceded by a dollar sign ($). Another file, containing a record of updates
is also created; it has a filename that is the same as the source file and a
filetype of UPDLOG. For example:

Source Files Output Files

SAMPLE ASSEMBLE $SAMPLE ASSEMBLE

SAMPLE UPDATE SAMPLE UPDLOG

READY COBOL $READY COBOL

READY UPDATE READY UPDLOG

Now, you can assemble or compile the new source file created by the
UPDATE command.

You can create an update file using the XEDIT UPDATE option. Using
XEDIT, you do not need to enter the control statements in the UPDATE
file. They are generated automatically by the editor. For example:

xedit ready cobol a (upd

96 VM/SP eMS for System Programming

r-------
UJ[Jc]c:.1'~au·uo 8oQJuy~e [)u'OOG'C1uuuS

-.. _--- --'--' ._- --.. -.-.-.. ---------~:==--.--- -- _._- ---.- --:-=-~~:::-.::::~-==:-------------=-=-~::::~=:.==]

specifies that a file called READY COBOL is to be edited and all updates to
the file are placed in a separate file called READY UPDATE along with the
appropriate control statements.

The XEDIT UPDATE option expects source files to have sequence numbers
in columns 73 through 80. Before you can create an UPDATE file you must
use the XEDIT SERIAL subcommand to sequence your files. To generate
these sequence numbers, you should issue:

serial all

prior to issuing a FILE or SAVE subcommand when you are editing a file.
Alternately, you can preface sequence numbers with a three character
identifier, usually the first three characters of the filename. If you issue:

serial on

XEDIT writes sequence numbers in columns 76 through 80 of your file.
Columns 73 through 75 contain the first three characters of the filename. If
SERIAL ON is specified, you must also specify the NOSEQ8 option on the
XEDIT command to tell the editor to expect a sequence of numbers only in
columns 75 through 80. For example:

xedit ready cobol a (upd noseq8

Using an Existing Update File

If an update file already exists for a given source file and you wish to
either:

1. browse the source file with the updates applied or

2. continue updating the source file

issue the same XEDIT command that you entered when you created the
update file. For example:

xedit ready cobol a (upd

applies all updates contained in READY UPDATE to the source file
READY COBOL and displays the resulting file on the screen. Any updates
created during this editing session are added to those already contained in
READY UPDATE. Again, all control statements are automatically
generated by XEDIT. More information about the XEDIT UPDATE option
can be found in the VM/SP CMS Command Reference.

UPDATE Control Statements

The control statements used by the UPDATE command are similar to those
used by the as IEBUPDTE utility program or the DOS MAINT program
UPDATE function.

Each UPDATE statement must have the characters ./ in columns one and
two, followed by one or more blanks. The statements are described below.

Chapter 6. Updating Source Programs Using eMS 97

.-..... ___ .. ___ .. _._._ _ .. _ _ ... _ .. _._ .. _. ___ . ________ :J

SEQUENCE Statement: This statement tells the UPDATE command you
want to number or renumber the records in a file. Sequence numbers are
written in columns 73 through 80. For example, the statement:

./ S 1000

indicates that you want sequence numbering to be done in increments of
1000 with the first statement numbered 1000. The SEQUENCE statement is
convenient if you want to apply updates to a file that does not already have
sequence numbers. In this case, you may want to use the REP (replace)
option of the UPDATE command, so that instead of creating a new file
($filename), the original source file is replaced:

update sample (rep

INSERT Statement: This statement precedes new records that you want
to add to a source file. The INSERT statement tells the UPDATE command
where to add the new records. For example, the lines:

./ I 1600
TEST2 TM HOLIDAY,X'02'

BNO VACATION
HOLIDAY?
NOPE 0 0 0 VACATION

insert two lines of code, following the statement numbered 00001600, into
the output file. The inserted lines are flagged with asterisks in columns 73
through 80. The INSERT statement also allows you to request that new
statements be sequenced. See "Sequencing Output Records" on page 99.

DELETE Statement: This statement tells the UPDATE command which
records to delete from the source file. If your update file contains:

0/ D 2500

then only the record 00002500 is deleted. If the file contains

0/ D 2500 2800

then all the statements from 2500 through 2800 are deleted from the source
file.

REPLACE Statement: The REPLACE statement replaces one or more
records in the source file. It precedes the new records you want to add. It
is a combination of the DELETE and INSERT statements. For example, the
lines

0/ R 38000 38500
PLIST DS OD

DC CL8'TYPE'
DC CL8"
DC CL8'FILE'
DC CL8'A1'
DC 8X'FF'

replace the existing statements numbered 38000 through 38500 with the new /'
lines of code. As with the INSERT statement, new lines are not
automatically resequenced.

98 VM/SP eMS for System Programming

COMMENT Statement: Use this statement when you want to place
comments in the update log file. For example, the line:

oj * Changes by John Jo Programmer

is not processed by the UPDATE command when it creates the new source
file, but it is written into the update log file.

Sequencing Output Records

The UPDATE command expects source files to have sequence numbers in
columns 73 through 80. If you use the XEDIT subcommand SET SERIAL to
sequence your files, the sequence numbers are usually written in columns
76 through 80; columns 73 through 75 contain a three-character identifier
that is usually the first three characters of the filename. If you want an
eight-character sequence number and you are editing the file, you must use
the subcommand:

serial all

prior to issuing a FILE or SAVE subcommand. Or, you can create an
UPDATE file with the single record:

oj S

and issue the UPDATE command to sequence the file.

If you use the UPDATE command with a file that has been sequenced using
the default values of XEDIT, you must use the NOSEQ8 option. Otherwise,
the UPDATE command cannot process your input file. The command:

update sample (noseq8

tells UPDATE to use only columns 76 through 80 when it looks for
sequence numbers. Figure 12 shows the four files involved in a simple
update.

Chapter 6. Updating Source Programs Using CMS 99

L_ ... _. ______ ._. _______ . __ .. __ ... __ .. ______

The Source File, SAMPLE ASSEMBLE

SAMPLE

NAME
AGE
SAVRET

CSECT
USING SAMPLE,R12
LR R12,R15
ST R14,SAVRET
LINEDIT TEXT='PLEASE ENTER YOUR NAME'
RDTERM NAME
LINEDIT TEXT='PLEASE ENTER YOUR AGE'
RDTERM AGE
LINEDIT TEXT='HI, •••••••••• , YOU JUST TOLD HE YOU ARE

SUB=(CHARA,NAHE,CHARA,AGE),RENT=NO
L R14,SAVRET
BR R14
EJECT
DC CL130"
DC CL 130' ,
DC F'O'
REGEQU
EUD

00000100
00000200
00000300
00000400
00000500
00000600
00000700
OOOOOSOO

••••• ',x00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800 ~ ___ ----J

The Update File, SAMPLE UPDATE

./ * REVISION BY DLC

./ R 500

./ p. 700
LINEDIT TEXT='HHAT"S YOUR NAHE?',DOT=NO
1000
LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNAHE',

SUB= (CHARA, NAME)
RDTERH nAME
HVC DOCFN,NAHE
LA 1,PLIST
SVC 202
DC AL4 (ERROR)

RETURN EQU *
./ I 1200
ERROR EQU *

WRTERH 'FILE NOT FOUND'
B RETURN

./ D 1500

./ I 1600
PLIST DS OD

eL8'TYPE'
CL8' , DOCFll

DC
DC
DC
DC
DC

CLS'FILE'
CL8' A l'
8X'FF'

SAM00010
SA800020
SA800030
S1M00040

xSAM00050
51M00060
51M00070
5AM00080
51M00090
5AM00100
5A"00110
5AM00120
51M00130
51800140
5AM00150
51M00160
5A800170
5A800180
5A"00190
5A800200
51800210
SAM00220
5A800230
5A800240 L-__ ----J

Figure 12 (Part 1 of 2). Updating Source Files with the UPDATE Command

100 VM/SP eMS for System Programming

lLDr)JJlJ~U[(UCJ 8@GJu'c(;) ~)[j-'(fj)~[j'8uuuG
c·-· .--.-... -.. --....... ----... -.... ----... -----...... -----.-.-.-.---... ----.--.. --...... --.--.-.. -.. --- .. -.--.. --.-------... --.. ----.. -.- .. -... -- .. --.--.---.---.---------.-------=:1

The Record of Updates Pile, SAMPLE UPDLOG

UPDATING 'SAMPLE ASSEMBLE Al'
./ • REVISION BY DLC

WITH 'SAMPLE OPDATE Al' OPDATE LOG -- PAGE
-,
11

1
1

000005t) 01
./ R 500

DELETING •••
INSERTING •••

./ R 700 1000
DELETING •••

INSERTING •••

RETORN
• / I 1200

INSERTING... ERROR

./ D 1500
DELETING... AGE

./ I 1600
INSERTING... PLIST

DOCPN

LINEDIT TEXT='PLEASE ENTER YOUR NAME'
LINEDIT TEXT='WHAT"S YOUR NAHE1',DOT=NO

LINEDIT TEXT='PLEASE ENTER YOUR AGE'
RDTERM AGE
LINEDIT TEXT='BI, •••••••••• , YOO JUST TOLD HE YOO

SUB=(CHARA,NAHE,CBARA,AGE),RENT=NO
LINEDIT TEXT='BI, •••••••••• , ENTER THE DOCNAME',

SOB= (CBAHA, NAME)
RDTERM NAME
HVC DOCPN,NAHE
LA 1,PLIST
SVC 202
DC AL4 (ERROR)
EQO •

EQO •
WRTERM 'PILE NOT POUND'
B RETORN

DC

DS
DC
DC
DC
DC
DC

CL 130' •

OD
CLa'TYPE'
CLa' ,
CLa'PILE'
CLa'Al'
ax'pp'

The Opdated Output Pile, $SAHPLE ASSEMBLE

SAMPLE

RETORN

ERROR

NAHE
SAVRET
PLIST

DOCPN

CSECT
USING SAMPLE,R12
LR R12,R15
ST R14,SAVRET
LINEDIT TEXT='WHAT"S YOUR NAME1',DOT=NO
RDTERH NAME
LINEDIT TEXT='HI, •••••••••• , ENTER TH~ DOCNAME',

SUB=(CHARA,NAME)
RDTERM NAME
MVC DOCPH,NAME
LA 1,PLIST
SVC 202
DC AL4(ERROR)
EQU •
L R14,SAVRET
BR R14
EQU •
WRTERM 'PILE NOT POUND'
B RETURN
EJECT
DC CL130"
DC plOt
DS OD
DC CLa'TYPE'
DC CLa"
DC CLa'PILE'
DC CLa l A l'
DC aXlpp'
REGEQU
END

Figure 12 (Part 2 of 2). Updating Source Files with the UPDATE Command

ARE

........ , ,
000007001
000008001

••••• ·,x00000900'
00001000,

x········1

········1 , ,
········1 , , , , , ,
········1 ,
00001500, , , , , , , ,
000001001
00000200,
00000300,
00000400, ,
00000600,

x········, , , , , , , ,
00001100,
00001200, , , ,
00001300,
00001400,
00001600, , , , , ,
········1 00001700,
00001800, ,

Chapter 6. Updating Source Programs Using CMS 101

(lJl [»vJClliD ~uQ1 S(Q)M ~~CG r ~"(Q)QJ ~1@Uu\)S
L ... __ . _______ .

Multiple Updates

--_.:.._------_. __ ._--_._--_._J

The INSERT and REPLACE statements allow you to control the numbering
increment of records that you add to a source file. Notice, in Figure 12 on
page 100 that inserted records have the character string '********' in
columns 73 through 80. If you want sequence numbers on the inserted
records, you must do two things:

1. Include a dollar sign ($) on the INSERT or REPLACE statement,
optionally followed by operands indicating how the records should be
sequenced.

2. Use the INC option on the UPDATE command line. If you use the CTL
option, you do not have to specify the INC option. The CTL option is
described below, under "Multiple Updates."

For example, to sequence the records added in Figure 12 on page 100 the
control statements would appear as:

.j R 509 $

.j R 700 1000 $

.j I 1200 $

.j I 1600 $

and you would issue the UPDATE command:

update sample (inc

The UPDATE command sequences inserted records by increments of 10. If
you want to control the numbering (for example, inserting more than 9
statements between two existing statements), you can specify an alternate
sequencing scheme:

.j I 1800 $ 1805 5

Records introduced following this INSERT statement are numbered
00001805, 00001810, 00001815, and so on. (If the NOSEQ8 option is in effect,
then the records would be xxx01805, xxx01810, and so on, where xxx is the
three-character identifier used in columns 73 through 75.)

If you have several UPDATE files to apply to the same source, you may
apply them in a series of UPDATE commands. For example, if you have
updates named FICA UPDTUP1, FICA UPDTUP2, and FICA UPDTUP3 to
apply to the source file FICA PLIOPT, you could do the following:

1. Update the source file with FICA UPDr;rUP1:

update fica pliopt a fica updtup1

2. Update the source file produced by the above command with the FICA
UPDTUP2:

102 VM/SP eMS for System Programming

,,.,,,"

lD~j(~E)'~auru~ S()~~uJC:3 ~-J[j~O~[/C1UlrilS
[L--_.-_--_-_-_--_. -_.--_-_._.-.-_ _.-. __ -_-.. - -- ----.----.---.. ----.-..... --. -.. --.-=~=-=~:=:.~~.::..=.:..~=-~::~.~.:::.::.:.:..::.-::..-=::.~.:..=.=-==-_==.:..~~.:...::.::::.::=:::--==.::~~=:J

The Control File

update $fica pliopt a fica updtup2

3. Update the new source file with FICA UPDTUP3:

update $$fica pliopt a fica updtup3

This final UPDATE command produces the file $$$FICA PLIOPT, which is
now the fully updated source file. This method is cumbersome, however,
particularly if you have many updates to apply. They must be applied in a
particular order. Therefore, the UPDATE command provides a multilevel
update scheme, which you can use to apply many updates at one time, in a
specified order.

To apply multilevel updates, you must have a control file, which by
convention has a filetype of CNTRL and a filename that is the same as the
source input file. Therefore, to apply the three update files to FICA
PLIOPT, you should create a file named FICA CNTRL.

A control file is actually a list. It does not contain any actual update
control statements (INSERT, DELETE, and so on), but rather it indicates
what update files should be applied, and in what order. In the case of a
multilevel update, all the update files must have the same filename as the
source file. Therefore, only the file types need be specified in the control file
to uniquely identify the update file. In fact, since all your update files
specified in a control file must have filetypes beginning with the characters
UPDT, you need only specify the unique part of the filetype. The control
file for FICA PLIOPT, named FICA CNTRL, may typically look like the
following:

TEXT MACS PLILIB
FICA3 UP3
FICA2 UP2
FICAI UPI

The first non-commentary record in the control file must be a MACS
record. The second field in this record must be "MACS", and it may be
followed by up to 29 macro library names (subject to the character limit of
the line). Every record in the control file must have an "update level
identifier." In this example, the update level identifiers are TEXT on the
MACS record, FICA1 for the UP1 record, and so on. The update level
identifier may have a maximum of five characters. See the "The STK
Option" on page 111 for more details about the "update level identifier."

The UPDATE command only uses the MACS record and the update level
identifier under special circumstances. These are described later under
"The VMF ASM EXEC Procedure" on page 109. For now, you only need to
know that these things must be in a control file in order for the UPDATE
command to execute properly.

Then, to update FICA PLIOPT, issue the UPDATE command as follows:

update fica pliopt (ctl

Chapter 6. Updating Source Programs Using CMS 103

c=. _______ . ____ . ___ ._ .. ___ .. _ ... ________ . __ . _________ ._. __ . __ ~ _______ . ._-_._-------------_._----J

When you use the CTL option and you do not specify the name of a control
file, the UPDATE command looks for a control file with the filetype of
CNTRL and a filename the same as the source file. From the control file, it
reads the filetypes of the updates to be applied. In this example, the
UPDATE command searches for the file FICA UPDTUPl and if found,
applies the updates; then UPDATE searches for FICA UPDTUP2, and
applies those updates, if any. Last it searches for FICA UPDTUP3, and
applies those updates.

Notice that the updates are applied from the bottom of the control file,
toward the top. This becomes important when an update is dependent on a
previous update. For example, if you add some lines to a file in FICA
UPDTUP1, then modify one of those lines in FICA UPDTUP2, it is
important that UPDTUPl was applied first.

Alternate Ways of Naming the Control Files

AUX Files

The example above, showing FICA CNTRL and UPDTxxxx files, illustrates
a naming scheme using the UPDATE command defaults. You can override
the defaults for the control file's filename and filetype.

For example, if you name a control file GROUP A CNTRL, you can specify
the name of the control file on the UPDATE command line. Then to update
FICA PLIOPT using the GROUP A CNTRL control file, issue the following
UPDATE command:

update fica pliopt a groupa cntrl (ctl

The two levels of update processing shown so far may be adequate for your
applications. There is, however, an additional level or step in the update
structure that the VM/SP procedures use and that you may want to use
also.

These techniques may be useful when you have more than one set of
updates to apply to a source program. For example, you may have two
groups of programmers who are working on different sets of changes for the
same source file. Each group may create several update files and have a
unique control file. When you combine these changes, you could create one
control file or you can use what are known as auxiliary control files.

The updating structure for auxiliary control files is based on conventions
for assigning filenames and filetypes. If a control file contains an entry
that begins with the characters "AUX", the UPDATE command assumes
that the file "fn AUXnnnn" contains a list of filetypes, not UPDATE
control statements. For example, if the file SAMPLE ASSEMBLE is being
updated with a control file that contains the record:

TESTl AUXLIST

104 VM/SP eMS for System Programming

[!JJ~jiJcT~Uu'uU SOQj[j'CG fJ [j"QJO[jIE1ulfuG
c=----.-----.-.. -... ----.----.--.---.. --... ---.. -....... ----.... -.---.. -.. --... -.. -....... -.. -. - ... -..... -.. --.. -- -- ... :.:.: ---.-.. --.- .. -- ... --- .. -- ------... ------- .-_ .. ----. -- ----....... _ ... - --]

Then SAMPLE AUXLIST does not contain UPDATE control statements. It
contains entries indicating the {iletypes of the update files, all of which
must have the same filename, SAMPLE.

Let's expand the example to see how this structure works. We have the
source file, SAMPLE ASSEMBLE. The file SAMPLE CNTRL contains the
entries:

TEXT MACS
3676 AUXLIST

The file, SAMPLE A UXLIST may look like the following:

TESTI
FIXLOOP
BYPASS

The files:

SAMPLE TESTI
SAMPLE FIXLOOP
SAMPLE BYPASS

all contain UPDATE control statements (INSERT, DELETE, and so on) to
be, applied to the file SAMPLE ASSEMBLE. As with control file
processing, the updates are applied from the bottom of the AUX file, so the
updates in SAMPLE BYPASS are applied first, then the updates in
SAMPLE FIXLOOP are applied, and so on. For an illustration of a set of
update files, see Figure 13 on page 106.

Chapter 6. Updating Source Programs Using CMS 105

___ . _______ . _____ === __________ . __________ . ____ .. ___________ . ____ . ___ . ______________ 1

REPORT
UPDTPROC

LUll /R .. .
./0 .. .

REPORT CNTRL

TEXT MACS
UP2 UPDTPROC
LIST AUXLlST
UP1 UPDTREP1
TEXT AUXFIX

REPORT
AUXLlST

REPORT
FIXIN

REPORT
UPDTREP1

W/I •••
./0 .. .
./R .. .

REPORT
FIXOUT

LUll ... W/I ...
. /R/R ..•
. /0... ./0 ...

update report assemble a (ctl)

REPORT
AUXFIX

REPORT REPORT
RTNB RTNA

W"'" WII /R... ./R .. .
./0... ./0 .. .

UPDATING 'REPORT ASSEMBLE A1' WITH 'REPORT RTNA A1'.
UPDATING WITH 'REPORT RTNB A1'.
UPDATING WITH 'REPORT UPDTREP1 A1'.
UPDATING WITH 'REPORT FIXOUT A1'.
UPDATING WITH 'REPORT FIXIN A1'.
UPDATING WITH 'REPORT UPDTPROC A1'.
R;

Figure 13. An Update with a Control File

106 VM/SP eMS for System Programming

QJ~3[~ci~Ouu[J S~~(!Ju'cGe ~Ju~([)qjG'clrrtfMJ
c=----.--.---.---.. -----.-.--.. ---.. -.. -... ----.- .. ---.-------------.-----.-.-.... --.----.... ---.-------.. -... - -.... -.... _ .. _ ... n_._ ... ___ .. ___ .. ____ .. __ . __ . ____]

Since the updating scheme uses only filetypes to uniquely identify update
files, it is possible to use the same control file to update different source
input files. For example, issue the following command when using the
control file REPORT CNTRL shown in Figure 13 on page 106:

update fica pliopt a report cntrl (ctl

The UPDATE command begins searching for updates to apply to FICA
PLIOPT, based on the entries in REPORT CNTRL. It searches for FICA
AUXFIX, which may contain entries pointing to update files; then it
searches for FICA UPDTREPl, and so on.

As long as all updates and auxiliary files associated with a source file have
the same filename as the source file, the updates are uniquely identifiable.
Therefore, the same control file can be used to update various source files.
VMjSP takes advantage of this capability in its own updating procedures.
By maintaining strict naming conventions, updates to various CP and CMS
modules are easily controlled and identified.

A control file may point to many AUX files in addition to many UPDT files.
You can modify a control file when you want to control which updates are
applied to a program. You may have several control files, and specify the
name of the control file you want to use on the UPDATE command line.
There is a lot of flexibility in the UPDATE command processing. You can
implement procedures and conventions for your individual applications.

Multiple Updates with XEDIT

The XEDIT CTL option creates multiple updates to a source file. First,
create a control file listing the updates to be applied to a source file.
Initially, you might have only the MACS record and one UPDATE filetype
specified. For example, you can create a file called FICA CNTRL that
contains:

TEXT MACS PLILIB
FICAl UPDTUPl

Next, specify the control file name that you have created after the XEDIT
CTL option. For example:

xedit fica pliopt (ctl fica

The editor searches for an update file called FICA UPDTUPI and applies
all updates contained in this file. If the update file does not exist, XEDIT
creates a file called FICA UPDTUPI which will contain all changes made
to the source file during the editing session in addition to the required
control statements.

If you wish to add another level of updates to your source file, insert a new
update filetype in your control file after the MACS record, for example:

TEXT MACS PLILIB
FICA2 UPDTUP2
FICAl UPDTUPl

Chapter 6. Updating Source Programs Using CMS 107

L ___ . __ . ___________ . __ . ____ ._. __ . ___ . _______ . ___ . _______ . __ ._--_._._--J

Preferred Level Updating

Then, XEDIT your source file again, specifying the CTL option, for
example:

xedit fica pliopt (ctl fica

XEDIT applies all updates contained in FICA UPDTUPI to the source file
FICA PLIOPT. After the resulting file is displayed, any additional updates
and the necessary control statements are automatically inserted in another
update file called FICA UPDTUP2, consistent with control file processing
from the bottom up.

Auxiliary control files can also be used with XEDIT. You can make your
control file point to AUX files that contain the filetypes of the actual
update files, or you can combine AUX files and update files in a single
control file. XEDIT begins applying updates from the bqttom up in the
control file and references the AUX files indicated. Any updates to the
source file produced during the editing session are inserted in the topmost
update filetype specified in either the control file or in the last AUX file
encountered using the 'bottom up' processing rule. More information about
the XEDIT CTL option can be found in the VM/SP System Product Editor
Command and Macro Reference.

There may exist more than one version of an update, each applicable to
different versions of the same module. For example, you may need one
version of an update for an unmodified base source module and another
version of that update if that module has been modified by a licensed
program. The AUX file used to update a particular module must then be
selected ,based on whether or not a licensed program modifies that module.
The AUX files listing the updates applicable to modules modified by a /
licensed program are called "preferred AUX files" because they must be
used if they exist rather than the mutually exclusive updates applicable to
unmodified modules. Using this preferred AUX file concept, every module
in a component can be assembled using the one CNTRL file applicable to a
user's configuration.

A single AUX file entry in a CNTRL file can specify more than one filetype.
The first filetype indicates a file that UPDATE uses only on one condition:
the files that the second and subsequent filetypes indicate do not exist. If
they do exist, this AUX file entry is ignored and no updating is done. The
files that the second and subsequent filetypes indicate are preferred because
UPDATE does not use the file that the first filetype indicates. Usually, the
preferred files appear later in the CNTRL file in a format that causes them
to be used for updating.

UPDATE scans each CNTRL file entry until a preferred filetype is found,
until there are no more filetypes on the entry, or until a comment is found.
(A character string less than four or more than eight characters is assumed
to be a comment.)

108 VM/SP eMS for Systein Programming

[---------_._-- ._._ .. -.---_ .. __ . --'---' -.. -.---------------.-.--... --------~-------=-.:::-----------------------_ _ ... _._-_._ ... _-_. __ ._-_. __ .-=-.-._-----------_._._ .. _.-,

The VMFASM EXEC Procedure

If you are an assembler language programmer and you are using the
UPDATE command to update source programs you may want to use the
VMF ASM EXEC procedure. VMF ASM is a VM/SP update procedure. It
invokes the UPDATE command and uses the ASSEMBLE command to
assemble the updated source file.

If you are not an assembler language programmer, you may wish to create
an EXEC similar to VMF ASM that calls one of the language compilers to
compile an updated source file, instead of calling the assembler.

When you use VMF ASM, you specify the source filename, the filename of
the control file, and optionally, parameters for the assembler. (The control
file for VMF ASM must have a filetype of CNTRL). For example, if you use
the file GENERAL CNTRL to update SAMPLE ASSEMBLE, you enter the
command line:

vmfasm sample general

The VMF ASM EXEC uses the MACS card and the update level identifiers
in the control file. It reads the MACS card to determine which macro
libraries (MACLIBs) should be searched by the assembler. Then VMFASM
issues the GLOBAL MACLIB command specifying the MACLIBs you name
on the MACS card.

VMF ASM uses the update level identifier to name the output text file
produced by the assembly. If the update level identifier of the most recent
update file (the last one located and applied) is anything other than TEXT,
the update level identifier is prefixed with the characters TXT to form the
filetype. For example, if the file GENERAL CNTRL contains the records:

TEXT MACS CMSLIB MYLIB OSMACRO
UP2 FIX2
UPl FIXl
TEXT AUXLIST

and updates the file SAMPLE ASSEMBLE, then:

o If the file SAMPLE UPDTFIX2 is found and the updates applied,
VMF ASM names the .output text deck SAMPLE TXTUP2.

o If the file SAMPLE UPDTFIXI is found and the updates applied but no
SAMPLE UPDTFIX2 is found, the text deck is named SAMPLE
TXT UP 1.

• If the file SAMPLE AUXLIST is found but no SAMPLE UPDTFIXI or
SAMPLE UPDTFIX2 files are found, the text deck is named SAMPLE
TEXT.

4» If no files are found, the update level identifier on the MACS card is
used and the text deck is named SAMPLE TEXT.

Chapter 6. Updating Source Programs Using CMS 109

________ =oJ

The new fn TEXT or fn TXTxxxxx resides on the A-disk. Because the
UPDATE command works from the bottom of a control file toward the top,
it is logical that the text filename be taken from the identifier of the last
update applied.

The VMF ASM EXEC does not produce an updated source file, but leaves
the original source intact.

VMF ASM produces two output files:

• A printed output listing that shows update activity

• The text file that contains the update log as well as the actual object
code.

If you use the CMS LOAD command to load a text file produced by
VMF ASM, records from the update log are flagged as invalid, but the
LOAD operation is not impaired.

Updating EXECs and Macros

If you wish to use the update facility to track changes to EXECs or macros
written for the System Product Interpreter, you need to use the
EXECUPDT command. The EXECUPDT command applies updates to an
EXEC source file (using the UPDATE command) and removes the sequence
numbers from the updated file to produce an executable version of the file.
Using EXECUPDT is very similar to using the VMFASM EXEC to apply
updates to an assembler language source and to assemble it.

Source files for the EXECUPDT command are fixed-length, 80-character
files with sequence numbers just like those for assembler language or
COBOL. The filetype of the EXEC source file has a '$' prefixed to the
normal filetype. For example, SAMPLE $EXEC could be the source for an
EXEC procedure and READY $XEDIT could be a source file for an XEDIT
macro.

Updates to the EXEC source are created using XEDIT in the same manner
as updates to programs in other languages. To apply the updates to the
source, use the EXECUPDT command. For a single level update, issue the
command:

execupdt sample exec

Note that the '$' in the filetype is not included in the fiJetype specified on
the EXECUPDT command. To do a multi-level update, you may use the
CTL option of EXECUPDT. For example:

execupdt sample exec (ctl general

110 VM/Sp· eMS for System Programming

r---- ---------

The STI(Option

&TRACE ALL

___ ~-U----------h-----------U-------------]

If you are interested in writing your own EXEC procedure to invoke the
UPDATE command, you may wish to use the STK option. The STK (stack)
option is valid only with the CTL option and is meaningful only when the
UPDATE command is invoked within an EXEC procedure.

When the STK option is specified, UPDATE stacks the following data lines
in the console stack:

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update that
was found and applied.

For example, an EXEC 2 EXEC that invokes the UPDATE command and
then the ASSEMBLE command may contain the lines:

UPDATE &1 ASSEMBLE * &2 CNTRL * (STK CTL
&READ VARS &STAR &TX
&READ VARS &STAR &LIBl &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIB8
GLOBAL MACLIB &LIBl &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIB8
&IF &TX NE TEXT FILEDEF TEXT DISK &1 TXT&TX Al
ASSEMBLE &1 &3 &4 &5 &6 &7 &8 &9 &10
ERASE $&1 ASSEMBLE

Below is a System Product Interpreter program that invokes the UPDATE
command and then the ASSEMBLE command:

/* Sample System Product Interpreter program to */
/* Update and Assemble a source program */
trace a
parse arg filename cntrlfile options

'UPDATE' filename 'ASSEMBLE *' cntrlfile 'cntrl * (STK CTL'
parse pull star tx
parse pull star libl lib2 lib3 lib4 lib5 lib6 lib7 lib8

'GLOBAL MACLIB' libl lib2 lib3 lib4 lib5 lib6 lib7 lib8
if tx ,= TEXT then 'FILEDEF TEXT DISK' filename 'TXT'tx 'Al'

'ASSEMBLE $'filename options
'ERASE $'filename 'ASSEMBLE'

If the EXEC that you use is named UP ASM EXEC, it is invoked with the
line:

upasm fica fica (print noxref

and the file FICA CNTRL contains:

MAC MACS CMSLIB OSMACRO MYTEST
FIXl UPDTFIX
LIST AUXLIST

Chapter 6. Updating Source Programs Using CMS 111

~--~

then the EXEC 2 EXEC executes the following commands:

UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL
GLOBAL MACLIB CMSLIB OSMACRO MYTEST
FILEDEF TEXT DISK FICA TXTFIXl Al
ASSEMBLE $FICA (PRINT NOXREF
ERASE $FICA ASSEMBLE

The System Product Interpreter program executes the following:

/* Update FICA ASSEMBLE using FICA CNTRL */
'UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL'
'GLOBAL MACLIB CMSLIB OSMACRO MYTEST'
'FILEDEF TEXT DISK FICA TXTFIXl Al'
'ASSEMBLE $FICA (PRINT NOXREF'
'ERASE $FICA ASSEMBLE'

The above examples assume that the update file FICA UPDTFIX was found
and applied.

112 VM/SP eMS for System Programming

,------._--------------•. _---._-

•

Using the Parsing Facility

The CMS parsing facility parses and translates command arguments. Your
programs can use the parsing facility to see if the user specifies the proper
arguments on invocation and to see what the arguments are. For a list of
CMS commands that use the parsing facility, see "Supported CMS
Commands" on page 116.

Advantages of the Parsing Facility

Advantages of DLCS

When you use the parsing facility, programming commands is simpler
because:

o The parsing facility detects invalid command arguments.

o All keyword abbreviations are expanded for you.

o Command syntax is defined separately from your program and can be
translated into different national languages.

o When a national language is in use, keywords in that language are
translated into the language recognized by your program.

o You do not have to write scanning code.

o The address and length of each token is provided.

o Validation codes are provided to identify the type of each token.

To use the parsing facility, you must define command syntax in a special
language, the definition language for command syntax (DLCS).

Keep the DLCS definitions in CMS files. A file can contain more than one
DLCS definition. The parsing facility parses a specified command by
checking whether all operands, options, keywords, and so on, are specified
according to the DLCS definition for that command.

Chapter 7. Developing Commands and Message' Files 113

Overview

Coding DLCS Statements

Defining command syntax in a DLCS file and using the parsing facility has
the following advantages:

• Syntax checking is unnecessary in your program.

o If you want to invoke your program in another national language, you
just have to modify your DLCS file.

Refer to "Coding Your Own Command Syntax with DLCS" on page 117 for
details on using DLCS.

To have the parsing facility do this checking, do the following:

1. Write DLCS statements.

2. Check for any DLCS coding errors using the CHECK option of the
CONVERT COMMANDS command.

3. Issue the CONVERT COMMANDS command to put your syntax file
into a machine readable form the parsing facility can use.

4. Issue the SET LANGUAGE command to enable the user's DLCS
definitions.

5. Issue the P ARSECMD command from a REXX program or EXEC 2
EXEC or the P ARSECMD macro from an assembler program to invoke
the parsing facility and to obtain the parsed and translated parameter
lists.

To show how DLCS statements work, here is a standard CMS command
string format:

command_name [operands ...] [(options ...]

DLCS has the following statements:

:CMD
:OPR
:OPT

for a command name
for an operand
for an option

A few other statements you can use in DLCS include:

:SYN
:KW.n
:*

to define synonyms
for command name modifiers
to specify comments

For example, the RDRLIST command has the following format:

RDRLIST [([PROFile fn] [Append] [)]]

114 VM/SP eMS for System Programming

Converting Your DLCS File

Here is how the syntax for RDRLIST is coded in DLCS:

:CMD D9K.RDRLIST RDRLIST RDRLIST 4 .f

:SYN RLIST 2 :i
:OPT KWL(<PROFILE 4>) FCN(FN) :i
:OPT KWL(<APPEND 1>) :i

--.-----=:J

The section, "Coding Your Own Command Syntax with DLCS" on page 117,
describes DLCS statements in detail.

When you are ready to use the DLCS file, you first have to convert the
DLCS file into an machine readable form the parsing facility can use. Use
the CONVERT COMMANDS command to do this.

You can use the CHECK option of CONVERT COMMANDS to make sure
your DLCS syntax descriptions are correct. In addition, you can issue
CONVERT COMMANDS with the CHECK option while you XEDIT the
DLCS file to help remove errors. Next, use the SET LANGUAGE command
to put the new DLCS definitions into effect.

Refer to the VM/SP CMS Command Reference for a complete description of
CONVERT COMMANDS and SET LANGUAGE.

Setting Command Name Synonyms and Translations

Use the SET TRANSLATE command to set user translation synonyms, user
translations, system translation synonyms, and system translations on or
off. Use the QUERY TRANSLATE command to display the contents of the
system synonym tables, system translate tables, user synonym tables, and
user translate tables.

These commands work similarly to the CMS SYNONYM and QUERY
SYNONYM commands.

(Refer to the VM/ SP CMS Command Reference for descriptions of SET
TRANSLATE, QUERY TRANSLATE, SYNONYM, and QUERY
SYNONYM.)

Invoicing the Parsing Facility

You can invoke the parsing facility in two ways:

1. From EXEC 2 EXECs or REXX programs, use the P ARSECMD
command.

The P ARSECMD command uses the EXECCOMM interface and creates
EXEC variables that describe the translated command string. See
Figure 14 on page 135 for an example using the PARSECMD command.

Refer to the VM/ SP CMS Command Reference for a description of the
PARSECMD command.

Chapter 7. Developing Commands and Message Files 115

I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2. From assembler programs, use the P ARSECMD macro.

The P ARSECMD macro call should be in the beginning of the program.
Upon return from the parsing facility, the syntax of the command is
verified and detailed information on the translated command string is
available. See Figure 16 on page 138 for an example using the
P ARSECMD macro.

Refer to the VM/ SP eMS Macros and Functions Reference for a
description 6f the P ARSECMD macro.

Command keywords are uppercased according to the national language
uppercase table for the active application. If one is not found, the CMS
national language table is used.
o

Supported CMS Commands

The following commands use the parsing facility:

ACCESS
ALARM
CLEAR
COMPARE
CONVERT
COPYFILE
CURSOR
DEFAULTS
DEFINE
DELETE
DISK
DROP
ERASE
EXECDROP
EXECLOAD
EXECMAP
EXECSTAT3
FILELIST
FORMAT
GENMSG

GET
HELP
HELPCONV3
HIDE
IDENTIFY
LANGGEN
LANGMERG
LIST FILE
MACLIST
MAXIMIZE
MINIMIZE
MODMAP
MOREHELP
NAMES
NOTE
NUCXDROP
NUCXLOAD
NUCXMAP
PARSECMD
PEEK

POP
POSITION
PRINT
PUNCH
PUT
QUERY
RDR
RDRLIST
READ CARD
RECEIVE
REFRESH
RELEASE
RENAME
RESERVE
RESTORE
ROUTE
SCROLL
SENDFILE
SET
SHOW

SIZE
SORT
STATE
SVCTRACE
SYNONYM
TAPE
TELL
TXTLIB
TYPE
UPDATE
WAITREAD
WAITT
WRITE
XEDIT4
XMITMSG

These commands do not have parameters requiring translation, but the
command name itself can be translated.

4 XEDIT subcommands are not supported.

116 VM/SP eMS for System Programming

[0)'3'Ue~8~)aOuO ~~~IDuuuu-Jll8uJt:JG 80~~J ~YJC::GD(](JC0L)
[--------_ .. _--- ---=~====--=~..:..-----------=--=~-=--=~~=-=--=-..:==.:=-=-~=-~~=-=~=~~]

Coding Your Own Command SyntaJc with DLCS

Rules to Remember

Defining Your Command

Some rules to remember while coding in DLCS are:

o Use special characters: < > and' in your data tokens
(keyword names, function names, or function values) only if they are
enclosed in single quotes. The quotes are not counted as part of the
token.

o Do not use lowercase characters to specify your keyword names,
function names, or function values. Specify these exactly as they
appear after the command line is uppercased by the system at execution
time with the language in effect.

o Only the first 72 characters of any line of the DLCS file are used. Any
characters beyond 72 are ignored. You can use as many blanks as you
want between tokens, and you can continue DLCS statements on the
following line.

o Only one system and one user DLCS file for an application can be made
active at any time. When both a user file and a system file are active,
the definitions in the user file override the definitions in the system file.
If no syntax definition is found in the user file, the definition in the
system file is used.

o Your DLCS file must be merged with your user file for the application
you currently have. You can have only one user table; therefore, if you
have another command or receive a command from someone, you have
to merge it with the other commands in the user table. (For example, if
you want the CMS search order to find your command, define the
command in a DMS file.)

o You can define the translation of some keywords to be the same as the
keyword the command recognizes. For more information on translation,
see the VM/ SP eMS User's Guide.

Define each command as follows:

1. Start with a CMD statement to specify the name of the command and its
national language equivalent.

2. Define any synonyms using SYN statements immediately following the
CMD statement.

3. Define a two word command using the first word as the command name
and using the KW.l statement to define the second word. If the
command is a three word command, use the KW.2 statement to define
the third word. (The second and third words are command name

Chapter 7. Developing Commands and Message Files 117

modifiers.) You can also have a four word command, a five word
command, etc.

4. Define the syntax for the command with zero or more OPR statements
followed by zero or more OPT statements.

5. Use ':;' to specify the end of a statement.

SPECIFYING THE APPLICATION AND NATIONAL LANGUAGE

DLCS Statement: Use the DLCS statement to define the application
where commands in the DLCS file are parsed, to specify whether the
commands are system or user commands, and to specify the national
language for the file.

The format of the DLCS statement is:

:DLCS applid System I User

where:

applid

langid .. . ,

is an application identifier. It must be three alphanumeric characters,
and the first character must be alphabetic (e.g., DMS, DMK, OFS,
AGW, DKK, etc ...).

SystemlUser
specifies whether the file contains system or user syntax definition
statements. (Only the first letter is significant.)

langid
is the identifier for the language you are working in. It must be one
to five alphanumeric characters (e.g., FRNCH, AMENG, etc ...).

Notes:

1. The DLCS statement must be the first non-comment statement in the
DLCS file, and it must be the only DLCS statement in the file.

2. The CMS command search order uses translations and translation
synonyms defined in DLCS files with an application identifier of DMS.

3. The DLCS statement determines the filename and filetype of the output
files.

DEFINING THE COMMAND NAME, SYNONYMS, AND MODIFIERS

118 VM/SP eMS for System Programming

I
I
I
I
l

CMD Statement: Use the CMD statement to define the name of a
command as the system sees it and as the language sees it.

The format of the CMD statement is:

:CMD unique-id sl-name [nl-name n] :;

where:

unique-id
identifies the syntax definition for the command within the DLCS file.
This is required, and it must be unique for each syntax definition.
When you invoke the parsing facility, unique-id is matched to the one
you specify in the P ARSECMD.

unique-id is any combination of up to 16 characters. For quick access
to the syntax definitions, the first one or two characters are used as
an index. If the first two characters of unique-id are valid
hexadecimal digits, their value is used as the index. Otherwise, the
EBCDIC value of the first character is used. For example, unique-ids
D9xxx and Rxxx both have the same index value of 217. CMS can find
syntax definitions faster if you use as many of the 256 index values as
possible.

sl-name
is the command name as CMS sees it.

nl-name

n

is the command name as a national language user sees it. Defaults to
s1-name.

is the minimum number of characters that must be entered for nl-name
to be accepted. Defaults to the length of sl-name.

Notes:

1. A new command syntax begins each time a CMD statement is
encountered ..

2. All uniqueids used for IBM commands have a period as the fourth
character. Do not use a period as the fourth character in the the uniqueid
for your own commands.

3. A uniqueid of all blanks is reserved to let you define more than one
translation for a command. When this uniqueid is found, no syntax
information is stored. You can only code the :CMD and :SYN statements
in this case.

Chapter 7. Developing Commands and Message Files 119

4. The minimum length for abbreviations of command name translations
cannot be more than eight or HELP does not recognize them.

5. nl-name is only used by the CMS search order if the application identifier
of this DLCS file is DMS.

6. The SET TRANSLATE command enables or disables nl-name.

7. If SET ABBREV OFF is in effect, you must use the full nl-name.

SYN Statement: Use the SYN statement to define translation synonyms
for the command name defined on the :CMD statement.

The format of the SYN statement is:

:SYN newnamel nl [newname2 n2] :;

where:

newname

n

is the synonym you are assigning to the command name.

is the minimum number of characters you must enter for the synonym
to be accepted by CMS.

Notes:

1. The SYN statement is valid only for the first word of a command name
(not the command name modifiers).

2. All of the SYN statements for a command must immediately follow the
CMD statement.

3. Only SYN statements defined in a DLCS file with an application
identifier of DMS are used by the CMS command search order.

4. The SET TRANSLATE command enables and disables translation
synonyms defined by the :SYN statement.

5. Using multiple names on a single SYN statement has the same effect as
specifying a single name on many SYN statements. Order is not
important.

6. If SET ABBREV OFF is in effect, you must use the full newnamel.

120 VMjSP eMS for System Programming

KW.n Statement: Use the KW.n statement to define command name
modifiers keywords that modify the syntax used for parsing the remaining
parameters. For example, a command to manipulate a simple data base can
require different operands-- a filename for an open request, an option for a
close request, and other operands for update requests. The KW.n statement
lets you define a different syntax for each.

The format of the KW.n statement is:

:KW.n sl-name sl-abbrev [nl-name nl-abbrevJ . ,

where:

n
is the number of the level. It defines the nth modifier after the
command name.

sl-name
is the name as the command sees it.

sl-abbrev
is the minimum number of characters that must be entered for sl-name
to be accepted by CMS.

nl-name
is the name as the national language user enters it. Defaults to
sl-name.

nl-abbrev
is the minimum number of characters that must be entered for nl-name
to be accepted by CMS. Defaults to sl-abbrev.

Use the following form of the :KW.n statement to indicate that a string of
characters not defined by any :KW.n statement is accepted as an arbitrary
modifier.

:KW.n . ,

Note: This form may not be used as the first :KW.n statement on a level,
and only applies to :KW.n statements on the same level. No further syntax
information may follow this statement, that is, no :OPR, :OPT, or :KW.n
statements with a larger value for n. When the parsing facility finds an
arbitrary modifier it will process that remainder of the argument string as
one text string.

Chapter 7. Developing Commands and Message Files 121

(-------

Example:

Suppose the format of a database command is:

DATABASE OPEN filename
UPDATE ROW row number
UPDATE COLUMN column-name
CLOSE [(REPLACE [)]]

When the DLCS for t,his command is coded, instead of defining OPEN,
UPDATE, and CLOSE as operand keywords, they are coded as modifiers
(because they modify the syntax) using the KW.n statement. Because each
is the first modifier following the command name, the modifier level (the n
part of KW.n) is 1. In this way, you can define a command with many
modifiers at the same level. You can define the remaining operands and
options differently for OPEN, UPDATE, and CLOSE. The DLCS definition
so far is:

:CMD DATABASE DATABASE .,
: KW . 1 OPEN 4 :;

: OPR FCN (FN) :;
:KW.1 UPDATE :;
:KW.1 CLOSE 5 :;

:OPT KWL«REPLACE 3» :;

The keywords ROWand COLUMN can only follow UPDATE, and they
modify the syntax further. Each is the second modifier after the command
name, so they are coded as a second level modifier following UPDATE.
Each KW.2 statement on this second level may be followed by either a third
level or operand and option definitions, and so on. These KW.2 statements
nest after the previous KW.l statement so that ROW or COLUMN are only
recognized after UPDATE. The complete DLCS definition for the database
command is:

:CMD DATABASE DATABASE., :* A sample syntax
:KW.1 OPEN 4 :;

:OPR FCN(FN):; :* filename
:KW.1 UPDATE :;

: KW . 2 ROW 3 :;
:OPR FCN(PINTEGER)., :* row-number

:KW.2 COLUMN 3 :;
:OPR FCN(STRING):; :* column-name

:KW.1 CLOSE 5 :;
:OPT KWL«REPLACE 3» :;

DEFINING OPERANDS

OPR Statement: Use the OPR statement to define the syntax of each
operand of the command.

The format of the OPR statement is:

122 VM/SP eMS for System Programming

:OPR KWL(kwdef1 [kwdef2 ...])

[OPTIONAL I STOP] [REPEAT] .. . ,
:OPR FCN(fcndef1 [fcndef2 ...])

[OPTIONAL I STOP] [REPEAT] .,

:OPR KWL(kwdef1 [kwdef2 ...])

FCN(fcndef1 [fcndef2 ...])

[OPTIONAL I STOP] [REPEAT] . ,

where:

KWL

FCN

defines the keyword when an operand (or option when defining an
option) is defined to be a keyword.

defines functions to be used to validate the value of an operand.

KWLFCN
defines a keyword-value pair using the kwdef and fcndef expressions.
The kwdef and fcndef expressions are defined on pages 124 and 125.

OPTIONAL
indicates the operand can optionally be specified.

STOP
specifies that if the operand is not specified then parsing of the
operands stops at that point and no more operands can be specified.

REPEAT
indicates the operand can be specified one or more times.

Notes:

1. Specify aPR statements in the order the operands are specified on the
command.

2. Specify the aPR statement after the CMD statement and present SYN
statements or after appropriate KW.n statements.

3. If both OPTIONAL (or STOP) and REPEAT are specified, the operand
can be specified zero or more times.

Chapter 7. Developing Commands and Message Files 123

D)Gt7G~Q)~J)DuuQJ CC})uu'iluuuE.lliu0]S @Eu(;] Me9D@gC:;9
c::--_~ __

-- ---.---.--.-.-----.---------~

4. If no options are specified, the operand is a required operand that can be
specified only once.

DEFINING OPTIONS

OPT Statement: Use the OPT statement to define the syntax of the
options for the command.

The format of the OPT statement is:

:OPT KWL(kwdefl [kwdef2 ... J) :;

:OPT KWL(kwdefl [kwdef2 ...])

FCN (fcndefl [fcndef2 •••]) .,

where:

KWL
defines the keyword when an option (or operand when defining an
operand) is defined to be a keyword.

KWLFCN
defines a keyword-value pair using the kwdef and fcndef expressions.
The kwdef and fcndef expressions are defined below.

Note: OPT statements must follow the last aPR statement, if any were
used, for that command. Order of the OPT statements is not important.

kwdef EXPRESSION

The format of kwdef is:

[< sl-name sl-abbrev [nl-name nl-abbrevJ >]

where:

sl-name
is the keyword known by your command.

124 VM/SP eMS for System Programming

,/

["
_ _._._ ----_ .. _-_ -_.--_._-------_ .. _--------_._--------_ .. _ .. -._-_._----_._--_. __ .--_._]

sl-abbrev
is the minimum number of characters that must be entered for sl-name
to be accepted.

nl-name
is the keyword known by a national language user. Defaults to
sl-name.

nl-abbrev
is the minimum number of characters that must be entered for nl-name
to be accepted. Defaults to sl-abbrev.

fcndef EXPRESSION

fcndef can be anyone of the system functions listed below. In addition,
fcndef can be a user function. See "User Functions" on page 127 for more
information.

System Functions

Syntax Description

ALPHANUM any alphanumeric string

APPLID any three character alphanumeric string with the first
alphabetic

CHAR any single nonblank character

CUU any hex number between 001 and FFF (assumes leading
zeros)

DIGITS any unsigned number made up of digits 0-9

FN (filename) any string with the following characters:
A-Z,a-z,0-9,$,#,@, + ,-,:, and _

FT (filetype) any string with the following characters:
A-Z,a-z,0-9,$,#,@, + ,-,:, and _

FM (filemode) first character: A-Z, a-z; optional second
character: 0-6

EFN same as FN with ,*, or '%' also a valid character

EFT same as FT with ,*, or '%' also a valid character

EXECNAME any string that d'oes not contain the following characters:
= ,*,(,),' " and X'FF'

Chapter 7. Developing Commands and Message Files 125

I

I
I
I

EXECTYPE

HEX

INTEGER

NINTEGER

PINTEGER

MODE

STRING

TEXT

any string that does not contain the following characters:
= , * ,(,),' " and X'FF'

any hexadecimal number

any decimal whole number (can have + or - signs)

any decimal negative whole number

any decimal positive whole number (can have + sign)

any alphabetic character

any nonblank character string

any character string

INVALID no valid values

Notes:

1. You can specify function definitions with a subset of valid values. Only
items in the subset are valid. For example, if you specify
STRING(MONDAY, TUESDAY, WEDNESDAY), MONDAY,
TUESDA Y, and WEDNESDA Yare the only valid values.

2. If a list of functions is specified for fendef, the parsing facility validates
an operand or option value with the functions in the order they are
specified. The first function the value is valid for determines the
validation code of the value in PVCENTRY. Refer to the VM/SP CMS
Macros and Functions Reference for more information on the
PVCENTRY macro.

3. Input to the parsing facility is uppercased according to current language
before it is provided to system or use'7- functions for validation.

4. If a value is not valid according to any of the functions in the list, the
first one is used to determine which message, if any, is issued. If an error
message based on the first function is not appropriate, place the
INVALID function first in the list. For example:

:OPR FCN(INVALID, INTEGER(2,4,6), MODE) :i

The invalid function never accepts a value as valid, but a general error
message is issued when a value is not valid according to the rest of the
functions in the list.

5. Because some functions will validate tokens that are also valid for other
functions, you should be careful to list the most restrictive functions first.
For example, an operand defined as:

:OPR FCN(STRING, DIGITS, FN):i

126 VM/SP eMS for System Programming

c-·-·····--- ----.--... --- -.-.-.... -- .. ---.. ---. . .. -... --_ .. -.. -.......... -.-.... -.- .. --..... ----.--- -.--_ .. ---.. ---- -.. ----.----... ---.-----------.-- ... -.-.. --.-... -.. --.- .. ---.-. -.-.--- .. .

will always be validated as a string, while the syntax:

:OPR FCN(FN) REPEAT:;
:OPR FCN(DIGITS):;

can never be satisfied because the required digits operand will be
validated as part of the list of filenames.

6. The TEXT function cannot be specified in a list with any other function.

User Functions

-]

In addition to the system functions listed above, you can also make your
own functions for the parser to use to check if a token is valid. For
instance, you could make a function VOWEL that considers only alphabetic
characters A,E,I,O and U valid.

After you make your program for your function, assemble it, load it with
the RLDSA VE option, and use the GENMOD command. Then install the
MODULE file of this assembled program as a nucleus extension. Next,
include the name of your function in the DLCS for your command exactly
as you would any other function. The function is invoked by the parsing
facility with an SVC 202. The entry point name of the module must be the
same as the function name (fcndef) in your DLCS file. Your function is
passed the following parameters:

o An eight byte area containing the function name

o token-addr: a fullword containing the address of the token to be
validated. The token is already uppercased according to the current
language.

o token-length: a full word containing the number of characters in the
token.

o validation code: a byte containing the number interpreted by the parser
as the validation code of the user function. If the token is valid, this
field should be set by the user function. Upon return from the parsing
facility, you can check this validation code to see if your token is valid.

On entry to the program, Rl contains the address of the control block
containing the parameters described above. Use the assembler macro
P ARSERUF to generate a mapping of this control block.

Your program must pass back a return code in R15 that determines the
outcome of the function. A return code of zero specifies the token was
valid; a non-zero return code specifies the token was not valid. You can use
any non-zero return code except -3; this return code would be interpreted to
mean the function did not exist.·

Chapter 7. Developing Commands and Message Files 127

I
I'
I

[J)GvGUO[J)Uuu[j COuliuuu'ilC}uu0JS C}uu0J ~JJG9888GS
c:::: __________________ . __ . _____ . _______________________ ~:=~_==_=_==_ _ ________ __. _ .

Notes:

1. User functions do not override system functions with the same name
(system functions come first in the search order).

2. When you use CONVERT COMMANDS to process your DLCS file,
specify the ALL or USER options for user functions to be accepted.

3. When coding user functions in your CDSL file, you can enclose specific
values in parentheses as you can with any system functions and only
those values are accepted.

DEFINING ROUTINES AND KEYWORDS

Note: The :RTN and :KWD statements are reserved for IBM use. You may
not use them in writing your own commands in DLCS. They are only
shown here so that if you need to make your own translation of eMS
commands you can do so without introducing errors into the syntax or its
definition.

RTN Statements: Use the RTN statement to define the routine
responsible for parsing the command.

The format of the RTN statement is:

:RTN routine-name

where:

routine-name
is a eMS defined name.

Notes:

.. . ,

1. When the :RTN and :KWD statements are used, they replace (and are
nutually exclusive with) the :OPR and :OPT statements. There is one
:RTN statement followed by any number of :KWD statements.

2. When you are translating a CMS command that uses routine parsing, you
should only changed the nl-name and nl-abbr fields on the :KWD
statement. You must not add or delete :KWD statements or change the
routine and system language names.

128 VM/SP eMS for System Programming

~J(:;UG~(G[)Uu'uCJ (GOu·u'uuullc)ullQ.JS c}u-ll(~] ~UJr3GS~]~]::)n
L_::" _._~_~~~~:~~~~_~~~~~_-~-=:_=:.._...::===~-.-- ------ ----- -------- ------------ --~:::...~__=:.::.:.:::.:_==_=~_=:=.::.::...~~ _____ ~ __ :._.::._:~ _ .. __ .. _~--J

Writing Comments

KWD Statements: Use the KWD statement to define the keywords that
the command contains for translation purposes.

The format of the KWD statement is:

:KWD sl-name sl-abbrev [nl-name nl-abbrev] . ,

where:

sl-name
is the CMS defined keyword name.

sl-abbrev
is the minimum number of characters that must be entered for sl-name
to be accepted by CMS.

nl-name
is the keyword as a national language user enters it.

nl-abbrev
is the minimuni number of characters that must be entered for nl-name
to be accepted by CMS.

Notes:

1. When the :RTN and :KWD statements are used, they replace (and are
nutually exclusive with) the :OPR and :OPT statements. There is one
:RTN statement followed by any number of :KWD statements.

2. When you are translating a eMS command that uses routine parsing, you
should only changed the nl-name and nl-abbr fields on the :KWD
statement. You must not add or delete :KWD statements or change the
routine and system language names.

Comments: Use the characters :* to specify that a line or the remaining
characters of a line are to be ignored. Use this to put comments and
explanations in your DLCS file.

The format of a comment is:

[DLCS statements or parts of a statement] ... 't comment

Chapter 7. Developing Commands and Message' Files 129

Creating a DLCS File

............... _ , _. ___ ._ .. __ .~~_:::.:~_:=:J

where:

comment
is any comment

For examples of creating a DLCS file, see "Creating a DLCS File" on
page 131 and "Creating a DLCS File with National Language Translations"
on page 132.

What the Parser Does Not Flag

1. The parser does not flag the following situations:

o Dependent options and operands. The MAP operand of the
MACLIB command gives an example. Refer to the VM/ SP eMS
Command Reference.

o Mutually exclusive options or operands. This is where you have a
pair of operands or options. You must specify one or the other -
you cannot specify neither or both. The ACK and NOACK
operands of the NOTE command give an example. Refer to the
VM/ SP CMS Command Reference. Most commands that have
mutually exclusive options or operands ignore the condition and use
the last operand or option you specify.

2. Some IBM supplied commands also use the RTN and KWD statements
for special purposes. Do not use these statements for your own
commands.

oecs and the Parsing Facility

This section lists rules to remember when the current language is a
double-byte character set (DBCS) language.

In DLCS and CONVERT COMMANDS

o You can use DBCS characters only in keyword, modifier, and command
names.

o You can mix single byte and DBCS characters in a name in the DLCS,
but CONVERT COMMANDS only recognizes single byte characters as
DLCS delimiters.

o Shift-out and shift-in characters are always recognized as DBCS
delimiters in a DLCS definition regardless of the current language.

o A double byte character is treated as a single logical character. When
you specify the minimum length for abbreviations of synonyms or
translations, count double byte characters and EBCDIC characters as
single logical characters and ignore shift-out and shift-in characters.

130 VM/SP eMS for System Programming

[------------------------_ .. _------_._-----

From CMS

For example, if you have the keyword 'abcd rru k1k2k3 m efg', setting
the minimum abbreviation of four allows 'abcd' as the shortest
abbreviation. Setting the minimum abbreviation of five, would allow
'abcd ~ k1m ' as the shortest abbreviation. Setting the minimum
abbreviation of six allows 'abcdrru k1k2 ill ' as the shortest abbreviation,
and so on.

o If you use DBCS characters when adding translations and translation
synonyms to a DLCS file, you can issue CONVERT COMMANDS and
SET LANGUAGE on these translations. However, you can only use
these commands if the language you are using is set up as a double-byte
language.

o DBCS or mixed DBCS command names and keywords are accepted.
DBCS strings cannot be specified for operand and option values such as
filename, filetype, filemode, cuu, and so on.

o Each token in the tokenized PLIST is resolved to be a complete DBCS
string. In other words, one of these tokens can contain no more than
three double byte characters.

o When you invoke CMS commands, you can use DBCS EBCDIC to
specify CMS delimiters such as blanks or parentheses.

Examples: Using the Parsing Facility

Creating a DLCS File

You have two commands, MYCMD1 and YOURCMD.

MYCMD1 has the following syntax:

MYCmdl fn ft [([DlskIPRint] [NUMrecs nnn] [)]]

YOURCMD has the following syntax:

YOURcmd string [(TYPE [)]]

Instead of coding syntax checking into your program, you plan to invoke
the parsing facility for these commands. So you have to create a DLCS file
to contain both syntax definitions.

You can create a CMS file called TEST DLCS to contain the statements for
these commands that could look like this:

Chapter 7. Developing Commands and Message 'Files 131

L_. ____ .

o

1
2
3
4
5
6
7
8
9

10
11
12

where:

:DLCS DMS USER AMENG :i
:* The first command

:CMD MMYCMD1 MYCMD1 MYCMD1 3 0'
:SYN MY1 3 :i
:OPR FCN(FN) :i
: OPR FCN (FT) : i
:OPT KWL«DISK 2> <PRINT 2» :i
:OPT KWL«NUMRECS 3» FCN(PINTEGER) 0'

:* The second command
:CMD YYOURCMD YOURCMD YOURCMD 4 :i

:OPR FCN(STRING) :i

:OPT KWL«TYPE 4» 0'

Line Explanation
Number

1

2

3

4

5
6
7

8

9

10

11
12

Defines this file for the DMS application, the commands as user
commands, and the ID of the language as AMENG.
A comment indicating the start of the first command syntax
definition.
Defines MMYCMDI as the unique-id for this syntax definition,
and MYCMDI as the command name with a minimum
abbreviation of MYC.
Defines a synonym, MYl, for the command name with no
abbreviation.
Specifies the first required operand is a filename.
Specifies the second required operand is a filetype.
Specifies two options: DISK as an option with a minimum
abbreviation of DI, and PRINT as an option with a minimum
abbreviation of PRo
Specifies another option as a keyword-value pair: NUMRECS
as an option with a minimum abbreviation of NUM.
A comment indicating the start of the second command syntax
definition.
Defines the unique-id and command name for this command
definition.
Defines the only operand of this command as string.
Defines TYPE as the option with no abbreviation.

Creating a DLCS File with National Language Translations

You could also create TESTFRAN DLCS to contain national language
translations for these two commands. If you wanted to include French
translations, your file might look like this:

132 VM/SP eMS for System Programming

./

1
2
3
4
5
6
7
8
9

10
11
12

~JG"JG~O~JDuuQj (COu-{Uu~uuClU''i)(C]G C1u!l[] ~JGGOElfJ:~~D
-- -. ---------.-------.----.-------.- - --.-----. ----.-- --------- .------.. ---.. -------------.----- ----.-.--------.--.-.. -.-- .----.-~:J

:DLCS OMS USER FRANC :;
:* The first command

:CMD MMYCMDI MYCMDI FRANCMDI 8 :;
:SYN MYI 3 :i
: OPR FCN (FN) : i
: OPR FCN (FT) : i
:OPT KWL«DISK 2 DISQUE 4> <PRINT 2 IMPRIMER 4» :i
:OPT KWL«NUMRECS 3 NOMENREG 6» FCN(PINTEGER) Of

:* The second command
:CMD YYOURCMD YOURCMD VOTRECOM 5 :i

:OPR FCN(STRING) :i
:OPT KWL«TYPE 4 AFFICHER 3» :i

where:

Line Explanation
Number

1 Defines this file for the DMS application, the commands as user
commands, and the ID of the language to be FRANC.

2 A comment indicating the start of the first command syntax
definition.

3 Defines MMYCMD1 as the unique-id for this syntax definition,
MYCMD1 as the command name, and FRANCMD1 as the
national language name with no abbreviation.

4 Defines a synonym, MY1, for the command name with no
abbreviation.

5 Specifies the first required operand is a filename.
6 Specifies the second required operand is a filetype.
7 Specifies two options: DISK as an option with a minimum

abbreviation of DI, and DISQUE as the national language name
with a minimum abbreviation of DISQ. PRINT as an option
with a minimum abbreviation of PR, and IMPRIMER as the
national language name with a minimum abbreviation of IMPR.

8 Specifies another option as a keyword-value pair: NUMRECS
as an option with a minimum abbreviation of NUM, and
NOMENREG as the national language name with a minimum
abbreviation of NOMENR.

9 A comment indicating the start of the second command syntax
definition.

10 Defines the unique-id, command name, and national language
name for this command definition.

11 Defines the only operand of this command as string.
12 Defines TYPE as an option with no abbreviation, and

AFFICHER as the national language name with a minimum
abbreviation of AFF.

Calling the Parsing Facility from a REXX Program

You have a CMS file called TEST DLCS containing DLCS statements for
the command MYCMD1 with the following syntax:

MYCmdl fn ft [([DIskIPRint] [NUMrecs nnn] [)]]

Chapter 7. Developing Commands and Message Files 133

L ___ . __ _ __________________________________ J

The syntax definition for this command is in the file TEST DLCS. See the
example "Creating a DLCS File" on page 131 for the contents of TEST
DLCS.

Once you use CONVERT COMMANDS to convert your file into a format
that can be read in internally and use the SET LANGUAGE command to
activate the language, you can invoke the parsing facility from an EXEC.

The following two sample REXX programs process MYCMDl. The first one
illustrates a call to the parsing facility. The second does not call the
parsing facility. The EXEC performs syntax checking.

134 VM/SP eMS for System Programming

[jJGvG~CG[)auuU COuuuu'JuEJuu(]S c1uu~J ~'J(~GSC10(~S
[. - ... ------.----.--.--------..... -.. -.-.. --... --.------_. __ _._. __ __ .. _-----_._----_._--_._._----_._-_ .. -. __ .----... _.-_ ... _ - ... _.-.-_ .. _ .. _ .. _--J

/* This EXEC processes the MYCMDI command with a format */
/* as follows: MYCmdl fn ft (DIsklPRint NUMrecs nnn) */
/* The options may be omitted; the file name and type */
/* cannot. */
address command

/* First, call the parser to check syntax of the command */
/* string. */
'PARSECMD MMYCMD1'

If rc ,= 0 then signal error /* Go to ERROR if bad */
/* string. */

/* The command string is valid, so we can search through */
/* the tokens to find out what options were specified. */
/* It does not matter what language is active, because */
/* the parser has translated the command name and any */
/* options that were given. */
/* */
/* We know that: */
/* token.l= the command name MYCMDI; */
/* token.2= the passed file name; */
/* token.3= the passed file type; */
/* if it exists ,token. 4=OPTSTART; */
/* and if they exist, remaining tokens -.5, .6, .7 - */
/* could be TYPE, DISK, NUMRECS, or nnn. */

number '*'
do i = 4 to token.O

select

/* Set default output to
/* disk.
/* Set number to the
/* whole file.
/* Loop thru tokens, set
/* flags.

when token.i 'DISK' then how_to_output = 'DISK'
when token.i 'PRINT' then how_to_output = 'PRINT'

*/
*/
*/
*/
*/
*/

otherwise /* Must be NUMRECS */
i = i + I /* parameter. */

end
end

number = token.i

/* At this point, all of our flags and values have been */
/* set, and we are ready to process the file.

*/

I Figure 14. Sample REXX Program 1

Chapter 7. Developing Commands and Message Files 135

L __ .. _ .. __ . ___ ... ___ .. _. ___ . ___ . ________ .. _________ ._. _____ _

/* This EXEC processes the MYCMDl command with a format */
/* as follows: MYCmdl fn ft (DIsk\PRint NUMrecs nnn) */
/* The options may be omitted; the file name and type */
/* cannot. */
address command

/* First lets see what was passed to us */
arg fn ft '(' options
if fn=" \ ft = " then signal NAME_MISS /*parms missing? */
'ESTATE' fn ft '*' /* check validity of fn/ft */
if rc = 20 then signal NAME_ERROR /* invalid fn or ft */

how_to_output = "
number = "

/* initialize to nulls
/* same here

*/
*/

do while options ,= " /* loop thru all options */
. parse var options opt options

select;
when (opt='DISK') /* DISK specified */

then do /* ensure DISK/TYPE only once */
if how_to_output,=" then signal HOW_ERROR
how_to_output = 'DISK'

end
when (opt='TYPE') /* TYPE ~pecified */

then do /* ensure DISK/TYPE only once */
if how_to_output,=" then signal HOW_ERROR
how_to_output = 'TYPE'

end

....................... _ _..1

when (opt='NUM' \opt='NUMR' \ opt= 'NUMRE , \opt='NUMREC' \opt='NUMRECS')
then do /* verify validity of number */

if number,=" then signal NUM_ERROR
parse var options num options
if num = " then signal NO_NUM_ERROR
if ,datatype(num,w) then signal INV_NUM_ERROR
if num <= 0 then signal INV_NUM_ERROR
number = num

end
otherwise /* unknown option */

end
end

signal INVALID_OPTION

I Figure 15 (Part 1 of 2). Sample REXX Program 2

136 VM/SP eMS for System Programming

/'
/

[==.=-=-=~-=::~=:.--- ... --.. -.. --.. --....... -.. --........ -.. -.----..... _ .. _ __ ... -................... _ ... __ .-_ .. __ _ ... _ -............. _ .. _._ _ _ .. __

/* We must set the defaults.
if how_to_output = " then how_to_output
if number = " then number = '*'
signal OK
/* Error Routines

NAME MISS:

'DISK'

say 'File name and file type must be specified'
signal EXIT

NAME ERROR:
say ''''fn ft'" is an invalid file ID'
signal EXIT

HOW ERROR:

*/

say how_to_output 'already specified, "'opt'" is invalid'
signal EXIT

NUM ERROR:
say 'NUMRECS specified twice'
signal EXIT

NO NUM ERROR:
say 'The value for NUMRECS has been omitted'
signal EXIT

INV NUM ERROR:
say '"'num'" is an invalid positive number for NUMRECS'
signal EXIT

INVALID OPTION:
say '"'opt'" is an invalid option'
signal EXIT

OK:
/* At this point, all of our flags and values have been */
/* set, and we are finally ready to process the file.

*/

I Figure 15 (Part 2 of 2). Sample REXX Program 2

Calling the Parsing Facility from an Assembler Program

*/

. - -.. -•. ~

The following two sample programs perform the same task. The first
program invokes the parsing facility via PARSECMD. In this way, you do
not need extra code to handle parsing. The second program includes code
for parsing abbreviations, missing operands, and extra operands as well as
code that issues error messages.

Chapter 7. Developing Commands and Message Files 137

__ .. ___ ._. __ . __ ._. ________ . ___ .. _._. ____ ... _ .. __ .. ______ . ____ .. __ . _____________________ ===::l

**
*
* ROUTINE:
* FUNCTION:

SSORT
TAKE 2 STRINGS AND DISPLAY THEM IN EITHER ASCENDING
OR DESCENDING ORDER *

* SYNTAX:
* DLCS:
*
*
*
*

SSORT (ASCENDINGIDESCENDING} STRING1 STRING2
:CMD FFSSORT SSORT SSORT 5 :;

:OPR KWL«ASCENDING 3><DESCENDING 4» :;
:OPR FCN(STRING) :;
:OPR FCN(STRING) :;

**
SSORT START

USING *,12
LR 12,15 ESTABLISH ADDRESSABLILITY
ST 14,R14SAVE SAVE RETURN ADDRESS

**
* PARSE SSORT COMMAND
**

LA 3,PARSLBL GET ADDRESS OF PARSERCB STORAGE
USING PARSERCB,3
PARSECMD MF=(E,PARSLBL),UNIQID=UID,PLIST=(l),

EPLIST=(O),ERROR=EXIT
USING PVCENTRY,10
L 10,PARPVCAD GET PARSER VALIDATION CODE TABLE
L 10,PVCNEXTA POINT TO ENTRY OF ASCEND/DESCEND OPR
L 9,PVCETOKA GET ADDRESS OF ASCEND/DESCEND OPR
L 10,PVCNEXTA POINT TO ENTRY OF 1ST STRING
L 5,PVCETOKA GET ADDRESS OF 1ST STRING
L 6,PVCETOKL GET LENGTH OF 1ST STRING
L 10,PVCNEXTA POINT TO ENTRY OF 2ND STRING
L 7,PVCETOKA GET ADDRESS OF 2ND STRING
L 8,PVCETOKL GET LENGTH OF 2ND STRING

**
* DISPLAY STRING1 AND STRING2 IN EITHER ASCENDING OR DESCENDING ORDER
**

CR 6,8 WHICH STRING HAS FEWER CHARS?
BH COMP2 2ND STRING, TAKE BRANCH
BCTR 6,0 DECREMENT FOR EXECUTE
EX 6,COMPARGS COMPARE STRINGS
LA 6,1(,6) INCREMENT BACK
BNH SMALL 1 IF 1ST STRING GOES 1ST, BRANCH
B SMALL2 IF 2ND STRING GOES 1ST, BRANCH

Figure 16 (Part 1 of 2). Sample Assembler Program 1

138 VM/SP eMS for System Programining

*

/'

c---·-·-·-·-·----·----··-·· --..... -.-.- ---.-.. ----.... -.-- .. -.. -....... -.---==-. -.-.--.. -.-...... -... -.-.. ----... -----....... . _ .. _ -_ _ - .. '.' _ _ .. _.]

COMP2

SMALL1

TYPE12

SMALL2

TYPE21

GOODEXIT

EXIT

PARSLBL
UID
R14SAVE
COMPARGS

DS OH
BCTR 8,0
EX 8,COMPARGS
LA 8,1(,8)
BNL SMALL2
DS OH
CLI 0(9),C'D'
BE TYPE21
DS OH
WRTERM (5),(6)
WRTERM (7),(8)
B GOODEXIT
DS OH
CLI O(9),C'D'
BE TYPE12
DS OH
WRTERM (7), (8)
WRTERM (5),(6)
DS OH
SR 15,15
DS OH
L 14,R14SAVE
BR 14
PARSECMD MF=L
DC CL16'FFSSORT'
DS A
CLC 0(*-*,5),0(7)
PARSERCB
PVCENTRY
END

DECREMENT FOR EXECUTE
COMPARE STRINGS
INCREMENT BACK
IF 2ND STRING GOES 1ST, BRANCH

WANT TO SORT IN DESCENDING ORDER ?
YES, TYPE 2ND FOLLOWED BY 1ST

WRITE OUT THE 1ST STRING
WRITE OUT THE 2ND STRING
EXIT WITH RC = 0

WANT TO SORT IN DESCENDING ORDER ?
YES, TYPE 1ST FOLLOWED BY 2ND

WRITE OUT THE 2ND STRING
WRITE OUT THE 1ST STRING

ZERO OUT RC

GET RETURN ADDRESS
RETURN
GET INITIALIZED PARSERCB
UNIQUE ID FOR PARSECMD
RETURN ADDRESS
COMPARE STRINGS

I Figure 16 (Part 2 of 2). Sample Assembler Program 1

Chapter 7. Developing Commands and Message Files 139

L ... ____ ._ _ _ .. ""'_' .. ' ' _. __ ,., __ , ___ .' _____ .. ~ __ -.-~--~--_-_,.-_-.. _-_-,_.-_,_-_-_-._-__ -_-.-._-_-_-_-_-.~::=-. ___ .-_____ -_-_-_-. __ -_::=-,_,_-___ -___ .. __ .. _~==:J

**
*
* ROUTINE: LSORT
* FUNCTION: TAKE 2 STRINGS AND DISPLAY THEM IN EITHER ASCENDING
* OR DESCENDING ORDER
* SYNTAX: LSORT {ASCENDINGIDESCENDING} STRING1 STRING2
* REQUIREMENTS: MUST GENMOD WITH SYSTEM OPTION
*
**
LSORT START

USING *,12
LR 12,15 ESTABLISH ADDRESSABLILITY
ST 14,R14SAVE SAVE RETURN ADDRESS

**
* PARSE LSORT COMMAND
**

LR 11,0 GET EPLIST ADDRESS
USING EPLIST,ll
L 9,EPLARGBG GET ADDRESS OF 1ST ARG
L 10,EPLARGND GET END OF ARGS ADDRESS
DROP 11
SR 10,9 GET LENGTH OF ARGS FIELD
LTR 10,10 DOES ARG1 EXIST ?
BZ MISSARG1 NO, ISSUE MESSAGE
LA 1,0(10,9) POINT PAST END OF ARGS FIELD
LR 3,9 GET ADDRESS FOR EXECUTE
BCTR 10,0 DECREMENT FOR EXECUTE
EX 10,FINDEND FIND END OF ARG 1
LA 10,1(,10) INCREMENT BACK
SR 1,9 GET LENGTH OF ARG 1
BZ MISSARG1 IF LENGTH 0, MISSING ARG 1
LR 11,1 SAVE LENGTH OF ARG 1
BCTR 11,0 DECREMENT FOR EXECUTE
EX 11,UPCASE UPPERCASE ARG 1
LA 11,1(,11) INCREMENT BACK

TRYASC OS OH
C 11,ASCMINL ARG LENGTH LESS THAN MIN FOR ASCEND
BL TRYDESC YES, TRY DESCENDING
C 11,ASCMAXL ARG LENGTH TOO BIG FOR ASCENDING ?
BH TRYDESC YES, TRY DESCENDING
BCTR 11,0 DECREMENT FOR EXECUTE
EX 11,COMPASC SEE IF ASCENDING WAS SPECIFIED
LA 11,1(11) INCREMENT BACK
BE GETSTRG1 IF ASCENDING, GET STRINGS

I Figure 17 (Part 1 of 4). Sample Assembler Program 2

140 VM/SP eMS for System Programming

?

~J8\~JC:)~03l)Uu'uU GOU'U'~Ul{~C}U-u~JG t:1uuQ"J ~)JJC3SS8gGS
L_._._. ___ :.·_~-':' __ ":':':: __ "':" __ ... __ . __ .. _. __ h ___ .:....:.. _. __ .. ~ _~~_~._:,:_:,:-~-,:,:~~::,=-:,,:,:~'-U-- -- -.- -------.-----.. - .. ----------.----.-.-.-------- ---.. ------. ----.-...... --.- .. -.-. -.. .,

TRYDESC DS
C
BL
C
BH
BCTR
EX
LA
BNE

GETSTRG1 OS
SR
BZ
LA
LR
BCTR
EX
LA
BZ
LR
LR
SR
SR
LA
LR
BCTR
EX
LA
BZ
SR
BZ
LR

GETSTRG2 OS
SR
BZ
LA
LR
BCTR
EX
LA
BZ
LR
LR
SR
SR
LA
LR
BCTR

OH
11,DESCMINL
BADARG1
11,DESCMAXL
BADARG1
11,0
11,COMPDESC
11,1(11)
BADARG1
OH
10,11
MISSARG2
4,0(11,9)
1,4
10,0
10,FINDSTRT
10,1(,10)
MISSARG2
5,1
2,5
2,4
10,2
1,0(10,5)
3,5
10,0
10,FINDEND
10,1(,10)
MISSARG3
1,5
MISSARG2
6,1
OH
10,6
MISSARG3
4,0(6,5)
1,4
10,0
10,FINDSTRT
10,1(,10)
MISSARG3
7,1
2,7
2,4
10,2
1,0(10,5)
3,7
10,0

ARG LENGTH LESS THAN MIN FOR DESCEND?
YES, ARG1 IS BAD .
ARG LENGTH TOO BIG FOR DESCENDING ?
YES, ARG1 IS BAD
DECREMENT FOR EXECUTE
SEE IF ASCENDING WAS SPECIFIED
INCREMENT BACK
IF NOT DESCENDING, ARG IS BAD

ADJUST LENGTH OF ARGS FIELD
IF 0, MISSING ARG 2
POINT PAST END OF ARG 1
GET FOR EXECUTE
DECREMENT FOR EXECUTE
FIND START OF STRING 1
INCREMENT BACK
ARG 2 MISSING, ISSUE MESSAGE
REMEMBER ADDRESS OF STRING1
GET ADDRESS OF STRING 1
- ADDRESS OF 1ST DEL AFTER ARG 1
ADJUST LENGTH OF ARGS FIELD
POINT PAST END OF ARGS FIELD
GET ADDRESS OF STRING 1
DECREMENT FOR EXECUTE
FIND END OF STRING 1
INCREMENT BACK
NO DELIMS, MISSING STRING 2
GET LENGTH OF STRING 1
IF LENGTH 0, MISSING ARG 2
SAVE LENGTH OF STRING 1

ADJUST LENGTH OF ARGS FIELD
IF 0, MISSING ARG 3
POINT PAST END OF STRING 1
GET FOR EXECUTE
DECREMENT FOR EXECUTE
FIND START OF STRING 2
INCREMENT BACK
ARG 3 MISSING, ISSUE MESSAGE
REMEMBER ADDRESS OF STRING 2
GET ADDRESS OF STRING 2
- ADDRESS OF 1ST DEL AFTER ARG 2
ADJUST LENGTH OF ARGS FIELD
POINT PAST END OF ARGS FIELD
GET ADDRESS OF STRING 2
DECREMENT FOR EXECUTE

I Figure 17 (Part 2 of 4). Sample Assembler Program 2

Chapter 7. Developing Commands and Message Files 141

L __ _

EX 10,FINDEND
LA 10,1(,10)
BZ GETLEN
SR 1,7
BZ MISSARG3
LR 8,1
B CHKEXTRA

GETLEN DS OH
LR 8,10

. ______ , ____________ . _____________ . ___ . ___ -:::::J

FIND END OF STRING 2
INCREMENT BACK
NO DELIMS, USE LENGTH OF ARGS FIELD
GET LENGTH OF STRING 2
IF LENGTH 0, MISSING ARG 3
SAVE LENGTH OF STRING 2
SEE IF EXTRA OPERANDS SPECIFIED

USE LENGTH LEFT OF ARGS FIELD
CHKEXTRA DS OH

SR 10,8 ADJUST LENGTH OF ARGS FIELD
BZ SORTSTRG IF 0, ALL OK
LA 4,0(8,7) POINT PAST END OF STRING 2
LR 1,4 GET FOR EXECUTE
BCTR 10,0 DECREMENT FOR EXECUTE
EX 10,FINDSTRT FIND EXTRA OPERANDS
LA 10,1(,10) INCREMENT BACK
BZ SORTSTRG NO EXTRA OPERANDS, ALL OK
LR 2,1 GET ADDRESS OF EXTRA OPERANDS
SR 2,4 - ADDRESS OF 1ST DEL AFTER ARG 3
SR 10,2 GET LENGTH OF EXTRA OPERANDS
LR 2,1 GET ADDRESS OF EXTRA OPERANDS
B EXTRAOP EXTRA OPERANDS, ISSUE MESSAGE

**
* DISPLAY STRING1 AND STRING2 IN EITHER ASCENDING OR DESCENDING ORDER
**
SORTSTRG DS OH

CR 6,8
BH COMP2
BCTR 6,0
EX 6,COMPARGS
LA 6,1(,6)
BNH SMALL 1
B SMALL2

COMP2 DS OH
BCTR 8,0
EX 8,COMPARGS
LA 8,1 (,8)
BNL SMALL2

SMALL1 DS OH
CLI O(9),C'D'
BE TYPE21

TYPE12 DS OH
WRTERM (5), (6)
WRTERM (7),(8)
B GOODEXIT

WHICH STRING HAS FEWER CHARS ?
2ND STRING, TAKE BRANCH
DECREMENT FOR EXECUTE
COMPARE STRINGS
INCREMENT BACK
IF 1ST STRING GOES 1ST, BRANCH
IF 2ND STRING GOES 1ST, BRANCH

DECREMENT FOR EXECUTE
COMPARE STRINGS
INCREMENT BACK
IF 2ND STRING GOES 1ST, BRANCH

WANT TO SORT IN DESCENDING ORDER ?
YES, TYPE 2ND FOLLOWED BY 1ST

WRITE OUT THE 1ST STRING
WRITE OUT THE 2ND STRING
EXIT WITH RC = °

I Figure 17 (Part 3 of 4). Sample Assembler Program 2

142 VM/SP eMS for System Programming

liJGt7G~CG~)Duu[J ([~([)u-liUu1i1l8u1(]9 8uu[] ~)jJes9Cl~GS
r-- --.------.------.--.. -.. -----..... -.-.. --------------.--.---.--.-... -.... ---- -- -.---.--.... ---._.-.. -- --------- .. -- ---.-----.... -- ... -.-------.-.---.. -------.-'~===:J

SMALL2

TYPE21

GOODEXIT

EXTRAOP

BADARG1

MISSARG1
MISSARG2
MISSARG3

BADRC

EXIT

FINDEND
FINDSTRT
UPCASE
COMPASC
COMPDESC
COMPARGS

BLANKS
DELIMS
NONDELIM
ASCEND
ASCMINL
ASCMAXL
DESCEND
DESCMINL
DESCMAXL
R14SAVE

EPLIST
EPLCMD
EPLARGBG
EPLARGND

DS OH
CLI 0(9),C'D'
BE TYPE12
DS OH
WRTERM (7) ,(8)
WRTERM (5), (6)
DS OH
SR 15,15
B EXIT
DS OH

WANT TO SORT IN DESCENDING ORDER ?
YES, TYPE 1ST FOLLOWED BY 2ND

WRITE OUT THE 2ND STRING
WRITE OUT THE 1ST STRING

ZERO OUT RC
EXIT

APPLMSG NUM=070,CSECT=SSO,SUB=(CHARA,((2) ,(10)))
B BADRC EXIT WITH RC = 24
DS OH
APPLMSG NUM=388,CSECT=SSO,SUB=(CHARA,((9),(11)))
B BADRC EXIT WITH RC = 24
DS OH
DS OH
DS OH
APPLMSG NUM=386,CSECT=SSO
DS OH
LA 15,24
DS OH
L 14,R14SAVE
BR 14

GET BAD RC

GET RETURN ADDRESS
RETURN
FIND NEXT DELIMITER
FIND NEXT NON-DELIMITER
UPPERCASE ARGUMENT

TRT 0(*-*,3),DELIMS
TRT 0(*-*,4),NONDELIM
OC 0(*-*,9),BLANKS
CLC 0(*-*,9),ASCEND
CLC 0(*-*,9),DESCEND
CLC 0 (* - * , 5) , 0 (7)

CHECK FOR ASCENDING OPERAND
CHECK FOR DESCENDING OPERAND
COMPARE STRINGS

DS OF
DC 10C" BLANKS FOR UPPERCASING
DC 64X'00' ,C' ',12X'OO' ,C' (' ,178X'00'
DC 64X'FF' ,X'OO' ,12X'FF' ,X'FF' ,178X'FF'
DC C'ASCENDING'
DC F'3'
DC F'9'
DC C'DESCENDING'
DC F'4'
DC F'10'
DS A
DSECT
DS
DS
DS
DS
END

OH
A
A
A

RETURN ADDRESS

OPERAND

I Figure 17 (Part 4 of 4). Sample Assembler Program 2

Chapter 7. Developing Commands and Message Files 143

_________________________________ " ___ .,_ .. _______ ._._ ... __ . __ . __ _____ .. _. __ .. ___ ... ___ .=-=-=.:=-=-=---=-_-=-=----=--=.:::1

Creating and Distributing Your Own CMS Commands

Using DLes

If you give users commands that call the parsing facility, put the syntax in
a DLCS file that has a unique application identifier. In this way, users who
receive your commands and syntax do not have to merge the syntax
definition with their DMS tables.

Refer to the example on page 132. In this example, you could change the
application identifier on the DLCS statement to your initials. For example,
if your initials are AGW, the DLCS statement looks like:

:DLCS AGW USER AMENG :;

and the call to P ARSECMD in REXX is:

'PARSECMD MMYCMDl (APPLID AGW'

To make it even easier for other users, you can automatically load and drop
the table from storage by inserting

'SET LANGUAGE (ADD AGW USER'

in your REXX program just before the call to PARSECMD, and

'SET LANGUAGE (DELETE AGW USER'

just before exiting. By doing this, all parsing is hidden, and users do not
have to issue the SET LANGUAGE command.

Defining Translations, Synonyms and Abbreviations

If users want to translate the command or the keywords of the command
into their own national language, they have to edit the DLCS table you
send them to translate the parameters. However, to translate commands or
keywords into a language other than the default language, the other
language must exist on your system. See "Chapter 16. Getting National
Languages on Your System" in the VM System Facilities for Programming
for more details.

If users want to define a translation for the command name, they can just
add an entry in their DMS table. For example, if the user's translation for
your command name is 'FRIENDCMD', the DMS table entry is

:CMD ' , MYCMDl FRIENDCMD 5 :;

If users just want to abbreviate your command name, they can add an entry
in their own DMS user tables that defines your command with the blank
uniqueid:

:CMD ' , MYCMDl MYCMDl 3:;

144 VM/SP eMS for System Programming

./

[__ ._. ___ == __ . __ ._., .. ___ .·_ .. __ ... · ... · .. u •• __ ••• ____ • ___ • __ ._._ •.• ________ , __ _

Defining HELP Files

To abbreviate the command name and define a synonym, such as 'MC', they
can add:

:CMD ' , MYCMDl MYCMDl 3:;
:SYN MC 2:;

After users define translations, synonyms and abbreviations, they must run
CONVERT COMMANDS against the files they have changed.

Note: This application does not support DBCS tokens unless there is
already a system table available for the application.

You can also create HELP text ~les for your own commands. The HELP
files contain information about these commands. By specifying the
appropriate HELP command, you can display information about the
commands you created. See the VMjSP CMS User's Guide for details on
creating your own HELP files.

Using Message Repository Files

When you write a program and you want error messages to be displayed,
you can put message'text directly in your program. For example, in
Assembler programs you can use the LINEDIT or other macros to display
messages on the screen; in REXX programs, you can just use a SAY
statement to display whatever message you want.

However, if you have many messages, your programs can become cluttered.
Instead of coding message text directly in a program, you can store all your
message texts in one file called a "repository." Then, when you want to
display a message, you can retrieve the message text you want from this
repository.

Having all message text in one central file has the following advantages:

1. Message text will not clutter your program.

2. You can access the same message from many programs without having
to specify the message text each time.

3. If you would like your messages to be available in a language other
than English, translation centers can just translate your single message
file. You can then have your messages in the language you want.

You can create your own message file for whatever application you want to
run, including CMS.

For CMS system messages, a source repository file is already built for you;
it has a fileid "DMSMES REPOS". You can XEDIT this file to view

Chapter 7. Developing Commands and Message Files 145

c== ______________ _ --------------------------------------_. __ ._--_._._-_.-- _J

messages. You can also print off a copy of the CMS message file so you can
refer to it when you want to call a CMS message from your program.

Note: For languages other than English available on your system, the
filename of the CMS message repository is different. See" Chapter 16.
Getting National Languages on Your System" in VM System
Facilities for Programming for more details.

Overview of Creating and Using a Message Repository

Five steps are involved with creating and then using your own message
repository file. These steps are:

1. Creating a message repository file using XEDIT.

2. Checking the accuracy of the message repository notation.

3. Converting the repository into machine readable form.

4. Making the repository file available for the language you are working
with.

5. Accessing the messages from programs using the APPLMSG macro or
the XMITMSG command.

Creating a Message File: When you create a message repository file, you
must follow certain notation rules. These rules are explained in "Rules for
Making Your Own Repository" on page 148.

Checking the Accuracy of the Message File: After you create a message
repository, you should check to see if you made any incorrect entries. You
can use the GENMSG command with the NOOBJECT option to flag any
invalid syntax statements:

GENMSG fn ft fm applid (NOOBJECT

(fn ft fm is the fileid of your message repository you created in XEDIT.
applid is the identifier for your application. It must be three characters.
For example, if you made the message file for an accounting application,
you might want to have your applid be "ACT".

Note: Be sure to record the applid you choose. You will need to reference
it when you access your messages, and you will also need the applid if you
create command syntax files.

GENMSG displays an error message in the listing file for any invalid
statement it finds in the message file. If you have any errors, just XEDIT
the file and correct any mistakes.

146 VM/SP eMS for System Programming

[I)Gt7G~O[)OU'uO COuul1ul{ilCJuu(]S 8ull[~ WJGSGt:1WG9
[----.--.----.------.---.-----.---.-.--------.--.-_________________ •.. h_. __ . ________________ •• --•• · •. n_ u,_ ••• -. -. •• - •.• ___ "h., -"-".-- 'J

Compiling the Message File: When your message repository contains no
more syntax errors, you then have to "compile" your message repository
file. This step converts your file into an machine readable form that the
message processor recognizes. The GENMSG command also does this task:

GENMSG fn ft fm applid

GENMSG creates an output file that contains the internal version of your
message repository. The filename of this output file is the same as the
input file; the filetype is "TXTlangid," where langid is the language
identifier. The default value for langid is the language currently in use.

See the VM/SP CMS Command Reference for details on the GENMSG
command.

Making the Message File Available: Once the message file has been
compiled, you must make the message file active for the language you are
working in. You accomplish this with the SET LANGUAGE command.

For example, suppose you created and compiled a message repository file
that is an addition to the CMS system repository. Before issuing the SET
LANGUAGE command, your compiled message file must have a filename of
DMSUME and a filetype of TXTlangid. To get your message file active,
you could issue the SET LANGUAGE command as follows:

SET LANGUAGE (ADD DMS USER

See the VM/ SP CMS Command Reference for a complete description of the
SET LANGUAGE command.

Accessing the Messages: You can access messages from a repository in
two different ways:

1. From EXEC 2 EXECs, REXX programs, or CMS, use the XMITMSG
command.

For example, to display this CMS message from a REXX program:

File MSG TEST not found

you could use the following XMITMSG call:

"XMITMSG 002 'MSG' 'TEST' (DISP FOR 1 APPLID DMS CaMP"

(See the VM/ SP CMS Command Reference for a complete description of
XMITMSG.)

2. From assembler programs, use the APPLMSG macro.

For example, to display this CMS message from an assembler program:

File MSG TEST not found

you could use the following APPLMSG call (assuming the address of
MSG is in register 5 and the address of TEST is in register 6):

Chapter 7. Developing Commands and Message Files 147

1

1

'I

APPLMSG NUM=002,FMT=1,
APPLID=DMS,COMP=YES,SUB=(CHARA,«5),3)),
CHARA,«6),4)) ,DISP=TYPE,TYPCALL=SVC

(See the VMj SP eMS Macros and Functions Reference for a complete
description of APPLMSG.)

Rules for Making Your Own Repository

Each message record in a repository file contains five fields. When you
create your file using XEDIT, you must make every message record in the
following format:

NNNNFFLLS ------------------------- text -------------------------------

columns 1 5 7 9 11

where:

NNNN

FF

LL

s

is the message number, in columns 1-4. You can use a 4 digit message
number in a message repository, but by default only the last three digits
are displayed in the message header. You can use the first digit to
group messages; for example, the first digit of all dictionary records (see
"Dictionary Substitution" on page 151) could be '8'.

You do not have to place messages in sequence by message number in a
CMS (or CMS application) user repository. However, message numbers
do have to be in sequential order in a CP repository.

is the message format, in columns 5-6. This field is for a message that
can be in several versions. If a message has just one format, you do not
need to type anything -- the format field defaults to "01". You cannot
use "00" as a format number.

is the line number of the message, in columns 7-8. This field is used if
you want the text for a single message format to be displayed on more
than one line. Messages that spread across more than one line must
have sequential, consecutive line numbers.

If a single format of a message has just one line, you do not need to type
a line number -- the line number defaults to "01" . You cannot use "00"
as a line number.

is the severity code, in column 9. Your severity codes should be one of
the following:

148 VM/SP eMS for System Programming

72

... - --.~

Code Message Type
E Error
I Information
R Response
S Severe
T Terminal
W Warning

text
is the message text, starting in column 11. You can specify up to 62
characters of message text on one line. If the text for a single message
is longer than 62 characters, you must put the message text on more
than one line and specify a line number for each.

If you want multi-line message text displayed on the screen in one
continuous line (wrapped around), the message number (NNNN), the
message format (FF), and the line number (LL) must be identical for
each line.

If you want multi-line message text displayed on the screen in more than
one line, you must make the first line number 01 and line numbers after
that 02, 03, etc.

Your message repository file should also contain comment records. These
must start with an asterisk in column 1.

* This is an example of a comment line

Comment lines, which can go anywhere in a message repository file, should
describe what is in the file.

Finally, you must put a control line in your external repository. This
control line specifies two things:

1. A character that specifies substitutions. This must be the first
non-blank character on the control line.

2. A number that specifies the amount of message number digits (3 or 4)
you want to display. This must be the second non-blank character on
the control line.

The control line must be the first non-comment record.

Example:

The following example shows an external repository file, which is stored on
a disk. You can view, edit, and update this message repository.
(Translation centers can also translate this to another language.)

Chapter 7. Developing Commands and Message Files 149

L ______ . __ --- -----_._-------------_ .. _-_ -...... _ ..• -_._-_. __ .. __ .. . _ ___ . ______ . ___ . __ .. __ . __ .1

* * This is an example of a message repository file for a small
* programming application.
* This was created via XEDIT.
* You can code a file similar to this for your own application.
*
& 3 SPECIFIES THE SUBSTITUTION CHARACTER + NO. OF DIGITS
0005 E Invalid syntax; please reissue command.
0015 R Enter the number of copies you want:
002501 I Function has completed
002502 I Subroutine has completed
0'100 01R Your program has just halted at label ABCD.
0100 02 You can quit the program by entering 'Q', or
0100 03 press the ENTER key to continue

Here is a line by line description of what this repository contains:

Line
Number(s) Explanation

1 -- 6

7

8

9

10 -- 11

Comment lines.

The control line.

The first non-blank character on this line specifies the
substitution character for messages -- &. (See "Substitution in
Messages" on page 151) The second non-blank character
specifies that you want to display only three message number
digits (the default).

Note: If a message number is greater than 999, then 4 digits are
displayed regardless of the control line number.

The first message in the repository, number 0005. Message
0005 has only one format and takes up only one line in the file;
so the FORMAT columns (5-6) and the LINE columns (7-8) are
blank. The message results from a user error, so the severity
(column 9) is "E".

The second message, number 0015. This message has only one
format and takes up only one line; so the FORMAT columns
(5-6) and the LINE columns (7-8) are blank. The message is
requesting input from a user, so the severity (column 9) is "R".

The third message, number 0025. This message number has
two formats; depending on the error, either Function has
completed (format 01) or Subroutine has completed
(format 02) is displayed. These messages just give the user
information, so their severity is "I."

150 VM/SP eMS for System Programming

~0t1G~O~Jau-u~J COu'lnu-uuClnuCC~Q C:1uu(~ ~JJGSS8[jes
[--_._ .. _. _ •.. __ ..• __ ._._._-_ .. _----_ .. __ ._. __ . __ ._-_ .. _-_ ... _-------_._----_. -_._._ .•. __ ._.-.-. __ .---::--._-_._._---_. __ .•.. _._ .. _ ... _ _ .. _._----------_._-_._--_ .. _-_ ------_.-... _ .. _--:--_._-_ .. __ .. _-_. __ _.]

12 -- 14

Substitution in Messages

The fourth and final message, number 0100. This message has
only one format, but it spreads across three lines of the
repository. Columns (7-8) show the line numbers of this
message. The message requests input from a user, so the
severity is "R."

In the above example, the text for each message is the same every time the
message is displayed. However, you will probably want to have some
message texts that are similar, but say different things depending on the
situation. For example, you might have a message that says:

Invalid option 'GO'

But you also want to have these messages in your repository:

Invalid option 'FILE'
Invalid option 'RUN'
Invalid option 'STOP'

You do not need four separate messages in your repository. Instead, you
can have a single message text, and then substitute different information
for the bad option. The single message looks like this:

Invalid option '&1'

Messages that require substitutions have parameters in a form defined by
the user (eg. &1, &2 ...). These parameters show the placement of the
substitutions and their order. The first character in the first
non-commentary record of the external repository defines the substitution
character. This character may not be a nBCS character.

Here are some rules about substitutions:

o A substitution may be a single word, a phrase, or an entire sentence.
o A substitution can go anywhere within a message.
o You can have more than one substitution per message.

The data that replaces the &1, &2, etc. can come from the program itself (a
parameter on the APPLMSG or XMITMSG call) or from a dictionary.

Dictionary Substitution

Each dictionary record contains a 4 digit message identifier and dictionary
text. These records are stored in the repository file along with the
messages. You can make the first digit of the message identifier a certain
number (8, for example) that shows the item is a dictionary item.

Example:

Here is an example of a message repository that contains a two-item
dictionary:

Chapter 7. Developing Commands and Message Files 151

--_ .. _--_ .. _._--- ._---

* * This is an example of a message repository file made via XEDIT
* You can code a file similar to this for your application.
*
& 4 LINE SPECIFIES THE SUBSTITUTION CHARACTER + NO. OF DIGITS
0007 E Invalid option '&1'
0017 I You have invoked the &1
8001 compiler
8002 assembler

Here is a line by line description of what this repository contains:

Line
Number(s) Explanation

1 -- 4 Comment lines.

5 The control line.

6

7

8

9

An ampersand (&) is the substitution character, and you want
to display 4 message number digits.

The first message in the repository, number 0007. When the
message is to be displayed, you have to specify what
information is to be substituted in place of the &1.

The second message, number 0017. When the message is to be
displayed, you have to specify what information is to be
substituted in place of the &1.

A dictionary item, number 8001. If you want to call message
0017 and specify DICT=80.01 on a APPLMSG call (or just 8001
on a XMITMSG call), the following message is displayed:

aaammm0017I You have invoked the compiler

(The message header also includes the application id aaa and
the program name within the application mmm.)

A second dictionary item, numbered 8002. If you want to call
message 0017 and specify DICT=8002 on a APPLMSG call (or
just 8002 on a XMITMSG call), the following message is
displayed:

aaammm0017I You have invoked the assembler

When you code the call to access a message (via APPLMSG or XMITMSG),
you just have to specify the dictionary number.

152 VM/8P eMS for System Programming

/'
I

._. ._: __ ._ __ .. _____ -___ ._~ __ :_._ .. _. _____ . _. ____ . __ .:... ___ . ______ -__________ ..:.:._. ____ ~..:. ___ ._.~ .. _____ ~ __ J

Creating Your Own eMS Messages

The eMS system repository uses three or four digits for eMS messages. It
also uses 8000-8nnn for dictionary items and unnumbered responses. You
can view this file using XEDIT, and you should print off a copy for you to
use as reference.

You can create your own eMS messages and put them in a repository.
Once you compile the message file (using GENMSG) and make the file
active (using SET LANGUAGE), you can access your own messages.

A user eMS repository can contain message numbers that are additions to
existing eMS messages or duplicate message numbers. If your eMS
repository contains message numbers that duplicate existing eMS
messages, your version overrides the system version.

For example, suppose you wanted to add your own informational message
that says:

The command you issued takes five minutes to complete.

You can enter this message in your eMS repository in two different ways:

1. Using your own unique message number.

You can look in the eMS system repository -- file "DMSMES REPOS" -
and find a number that is not currently being used for a eMS message.
For example, if number 1000 is not currently being used, you can put
this message in your repository as number 1000, compile the new
repository file, and make the file active. You can then access the
message using the command:

XMITMSG 1000 (DISP FOR 1 APPLID DMS CaMP

2. Using an existing eMS message number.

The eMS system repository contains a message

046E No library name specified

Suppose you enter the message

The command you issued takes five minutes to complete.

as number 046E in your repository, compile the repository file, and then
make it active. When you access message 046E, you do not see the
eMS system message, you see your own version of 046E.

If any of your own messages require dictionary substitutions, you should
note this restriction: You must include dictionary items for your messages in
your own message repository-you cannot access a message from your own
repository using dictionary items from the eMS message repository.

Chapter 7. Developing Commands and Message Files 153

L. "

Creating Your Own HELP Files

You can also create HELP text files for your own messages. The HELP
files contain explanatory information about these messages. By specifying
the appropriate HELP command, you can display information about the
messages you created. See the VM/ SP eMS User's Guide for details on
creating your own HELP files.

Making Your Messages Available to Others

When you make your own repository and issue a SET LANGUAGE
command, that repository is available only to your virtual machine.
However, you may want to allow other users on your system to access your
messages. You can accomplish this by either of the following two methods:

1. Have other users link to your disk. They must then issue a SET
LANGUAGE command for their virtual machine.

2. Have your message file placed in shared storage so all users can access
it. See "Chapter 16. Getting National Languages on Your System" in
VM System Facilities for Programming for details.

Creating Immediate Commands

In addition to the CMS built-in immediate commands, CMS provides
facilities for you to create your own immediate commands. Rules for
creating your own immediate commands are as follows:

1. Immediate commands can be created in three ways:

a. Immediate commands can be created from Assembler Language
programs by issuing the IMMCMD macro. This macro associates a
user-defined immediate command name with the address of a
user-supplied exit routine that receives control when the immediate
command is issued. Established immediate commands can also be
explicitly cancelled by the IMMCMD macro. If not explicitly
cancelled, all immediate commands created by the IMMCMD macro
are automatically cancelled either upon return to the CMS
command environment (if not in CMS SUBSET mode) or by entry to
CMS abend.

b. Immediate commands can be created from EXECs by use of the
IMMCMD command. This command establishes and cancels
immediate commands and determines the status of the immediate
command. All immediate commands not explicitly cancelled by the
IMMCMD command are automatically cancelled either upon return
to the CMS command environment (if not in CMS SUBSET mode)
or by entry to CMS abend. User exit routines cannot be used with
immediate commands established by the IMMCMD command.

154 VM/SP eMS for System Programming

/'

[______ . __ ._. _______ ._._. ____ ._ .• _. ____ . __ •.•.. _ .. _ .. __ ._ .. _._ _._ . __ . ______ ._._ .. _u. ___ •• __ •. __ . __ ._ •. ____________ .• '" .. _._'.'_.'."u um._._. _,.,,_., _ __ .•.. _.' _ ..•.. _ .. --,

c. Immediate commands can be created by using the immediate
attribute that is supported by the NUCEXT function and the
NUCXLOAD command. When a nucleus extension is declared with
the immediate attribute, that nucleus extension is established as an
immediate command. By allowing nucleus extensions to be declared
as immediate commands, the following additional flexibility is
provided:

1) Immediate command routines can be created in fre~ storage.

2) Immediate commands can be permanently established for the
duration of a CMS IPL (that is, they are not cleared during
CMS end-of-command processing).

3) Immediate commands can be invoked as exits during abend
(SERVICE attribute) and end-of-command (ENDCMD attribute)
processing.

4) Immediate commands can be established to survive CMS abend
(SYSTEM attribute).

Nucleus extensions established as immediate commands can be
invoked as immediate commands or as part of normal SVC 202
processing. When a nucleus extension is called as an immediate
command, the high-order byte of register 1 is set to X'06'.

The immediate attribute is supported by the NUCEXT function
(DECLARE, QUERY, CANCEL) and by the NUCXLOAD,
NUCXDROP, and NUCXMAP commands.

2. Immediate commands can be 1 to 8 characters in length. Synonyms can
be set up for immediate commands just like they can be for regular
CMS commands. Immediate commands or their synonyms must begin
with a non-blank character.

3. Immediate commands are delimited by a blank. Any data following the
blank is passed to the immediate command routine as parameters. The
capability to pass parameters is not applicable to immediate commands
declared by the IMMCMD command. Immediate commands and their
parameters are subject to translation just as regular CMS commands
are.

4. Immediate commands can be set up to override built-in CMS Immediate
commands (for example, HX). However, built-in CMS commands cannot
be cleared.

5. Immediate commands with the same name can override each other in a
stack-like manner, with the most recent one declared being the one in
effect.

6. The logical line end character is ignored on immediate command input
lines.

Chapter 7. Developing Commands and Message Files 155

7. Both the IMMCMD macro, the NUCEXT function, and the NUCXLOAD
command provide the capability to give control to an "exit" routine
whenever a specific immediate command is invoked. These exit
routines receive control as an extension of CMS I/O interrupt handing.
Therefore, they receive control with a PSW key of 0 and are disabled
for interrupts. The exit routine must not perform any I/O operations or
issue any SVCs that result in I/O operations. In addition, the exit
routine must not enable itself for interrupts. DIAGNOSE instructions
can be used within the exit, but the exit routine must not enable itself
for interruptions that may be caused by the DIAGNOSE (for example,
DIAGNOSE code X'58').

8. Terminal users may optionally require that all immediate commands be
prefixed with an escape character. Use the SET IMESCAPE command
to set the escape character. The status of IMESCAPE function can be
determined by the QUERY command. For more details, see the VM/ SP
CMS Command Reference.

156 VM/SP eMS for System Programming

I
L ____ . __ . _________ _

CMS simulates many of the functions of the Operating System (OS),
allowing you to compile, execute and debug as programs interactively. For
the most part, you do not need to be concerned with the CMS as
simulation routines; they are built into the CMS system. Before you can
compile and execute as programs in eMS, however, you must be
acquainted with the following:

e U sing as data sets in CMS
• How to use the FILEDEF command
• Creating CMS files from as data sets
• Using CMS libraries
o as macros that CMS can simulate

These topics are discussed below. Additional information for as VSAM
users is in "Chapter 10. Using Access Method Services and VSAM under
CMS and CMS/DOS" on page 273.

Note: The CMS system uses many as terms, but there are a number of as
functions that CMS performs somewhat differently. Refer to Figure 18 on
page 158 to help you become familiar with some of the equivalents (where
they do exist) for as terms and functions. It lists some commonly-used as
terms and discusses how CMS handles the functions they imply.

Chapter 8. Developing as Programs under CMS 157

t.-____________ . ____ _ ._-------_ .. __ ._----- .. -- ..

OS Term/Function CMS Equivalent

catalogued procedure EXEC files can execute command sequences similar to
catalogued procedures, and provide for conditional execution
based on return codes from previous steps.

data set Data sets are called files in CMS. eMS can simulate certain
OS data sets and can read real OS data sets only if they are
sequential or partitioned. CMS can never write to real OS
data sets. CMS reads and writes VSAM data sets.

data definition (DD) The FILEDEF command allows you to perform the functions
card of the DD statement to specify device types and output file

disposi tions.

data set control block Information about a CMS disk file is contained in a file
(DSCB) status table (FST).

EXEC card To execute a program in CMS you specify only the name of
the program if it is an EXEC, MODULE file, or CMS
command. To execute TEXT files, use the LOAD and START
commands.

job control language CMS and user-written commands perform the functions of
(JCL) JCL.

link-editing The CMS LKED command creates LOADLIB libraries from
CMS TEXT files and/or OS object modules. The CMS LOAD
command loads TEXT files into virtual storage, and resolves
external references; the GENMOD command creates
MODULE files ..

load module Load modules are members of CMS LOADLIB libraries.
LOADLIB members are loaded, relocated, and executed by
the OSRUN command, and LOADLIB members are loaded
and relocated by the NUCXLOAD command. Also, LOADLIB
members are referenced by the LINK, LOAD, ATTACH and
XCTL macros.

object module Language compiler output is placed in CMS files with a
filetype of TEXT.

partitioned data set CMS MACLIBs, TXTLIBs, and LOADLIBs are the only CMS
files that resemble partitioned data sets.

STEPCAT, JOBCAT VSAM catalogs can be assigned for jobs or job steps in CMS
by using the special ddnames IJSYSCT and IJSYSUC when
identifying catalogs.

STEPLIB, JOBLIB The GLOBAL command establishes macro, text, and
LOAD LIB libraries; you can indirectly provide job libraries
by accessing and releasing CMS disks that contain the files
and programs you need.

utility program Functions similar to those performed by the OS utility
programs are provided by CMS commands.

volume table of The list of files on a CMS disk is contained in a file
contents (VTOC) directory.

Figure 18. OS Terms and eMS Equivalents

158 VMjSP eMS for System Programming

UJGi'jG~O[)Du~CJ QJS [JU2t[JaU28u~u~G
~~-~~~~~~~--~~~-~~~-~--~.-~.-~-~--~--~--~--~--~--~ .. ~--~--.-.~"-~.-~~'----~-~--~--~-~--~-~-~.-'~--~--~-.~--~--~.~~:~~:=:~::~~~:~:~:~~~~~:-:-.=~::::~-~~~~:::-=::]

Using OS Data Sets in eMS

COlumand
ACCESS

ASSEMBLE

DDR

DLBL

FILEDEF

GLOBAL

LKED

LISTDS

MOVEFILE

NUCXLOAD

OSRUN

QUERY

RELEASE

STATE

You can have OS disks defined in your virtual machine configuration; they
may be either entire disks or minidisks: their size and extent depends on
their VM/SP directory entries. You can use partitioned and sequential data
sets on OS disks in CMS. If you want, you can create CMS files from your
OS data sets. If you have data sets on OS disks, you can read them from
programs you execute in CMS, but you cannot update them. The CMS
commands that recognize OS data sets on OS disks are listed in Figure 19.

Operation

Makes the OS disk containing the data set available to your CMS
virtual machine.

Assembles an OS source program under CMS.

Copies an entire OS disk to tape.

Defines OS data sets for use with access method services and VSAM
files for program input/output.

Defines the OS data set for use under CMS by associating an OS
ddname with an OS data set name. Once defined, the data set can be
used by an OS program running under CMS and can be manipulated
by the other commands that support OS functions.

Makes macro libraries or LOADLIB libraries available to CMS. You
can prepare an OS library for reference by the GLOBAL command by
issuing a FILEDEF command for the data set and giving the data set
the appropriate ·filetype of MACLIB or LOADLIB.

Creates CMS LOADLIB libraries from CMS TEXT files and/or OS
object modules.

Lists information describing OS data sets residing on OS disks.

Moves data records from one device to another device. Each device is
specified by a ddname, which must have been defined via FILEDEF.
You can use the MOVEFILE command to create CMS files from OS
data sets.

Loads, relocates, and establishes as a nucleus extension a load module
either from a CMS LOAD LIB, an OS module library on an OS
formatted disk.

Loads, relocates, and executes a load module either from a CMS
LOADLIB or from an OS module library on an OS formatted disk.

Lists (1) the files that have been defined with the FILEDEF and
DLBL commands (QUERY FILEDEF, QUERY DLBL), or (2) the
status of OS disks attached to your virtual machine (QUERY DISK,
QUERY SEARCH).

Releases an OS disk you have accessed (via ACCESS) from your CMS
virtual machine.

Verifies the existence of an OS data set on a disk. Before STATE can
verify the existence of the data set, you must have defined it (via
FILEDEF).

Figure 19. CMS Commands that Recognize OS Data Sets on OS Disks

When a language processor or a user-written program is executing in the
CMS environment and using OS-type functions, it is not executing OS code.

Chapter 8. Developing as Programs under CMS 159

,
L .. -.•.. -... , -. ~ ... -. -- .,.- '-"".''''--. ~

Instead, CMS provides routines that simulate the as functions required to
support as language processors and their generated object code.

CMS functionally simulates the as macros in a way that presents
equivalent results to programs executing under CMS. The as macros are
supported only to the extent stated in the publications for the supported
language processors and then only to the extent necessary to successfully
satisfy the specific requirement of the supervisory function.

Figure 22 on page 189 shows the as macro functions that are partially or
completely simulated, as defined by SVC number.

OS Simulated Data Sets

If you want to test programs in eMS that create or modify as data sets,
you can write "aS simulated data sets." These are eMS files that are
maintained on eMS disks, but in as format rather than in eMS format.
Since they are eMS files, you can edit, rename, copy, or manipulate them
just as you would any other CMS file. Since they are in OS-simulated
format, files with variable-blocked records may contain block and record
descriptor words so that the access methods can manipulate them properly.

The files that you create from as programs do not necessarily have to be
OS simulated data sets. You can create CMS files. The format of an output
file depends on how you specify the filemode number when you issue the
FILEDEF command to identify the file to CMS. If you specify the filemode
number as 4, CMS creates a file that is in as simulated data set format on
a CMS disk. If you want to read an as simulated data set that is variable
blocked or fixed blocked, rename the data set with a filemode number of 4.
eMS as simulation routines are then able to read short blocks that are not
filled with records.

eMS can read and write as simulated data sets using the BDAM, BP AM,
BSAM, and QSAM access methods. See "Access Method Support" on page
199 for a description of these access methods.

When an input or output error occurs, do not depend on as sense bytes.
An error code is supplied by eMS in the ECB in place of the sense bytes.
These error codes differ for various types of devices and their meaning can
be found in the VM/SP System Messages and Codes under DMS message
120S.

Note: Results may be unpredictable if two DCBs access the same data set
at the same time.

160 VM/SP eMS for System Programming

[)GUG~8[JUu-u[J 08 [Ju'O[ju'8uu'u8
r...:::.==~:_.~.::..:._.:..:.::.: __ ~=:_~ . .:.._..:..:.::.:......:.~~~ ~~~~~==-=: ---.--- -.. -----.--- ---.-.------.-.------._---.... ---- --------.--- ---.-.. - ---------]

Restrictions for Reading as Data Sets

The following restrictions apply when you read as data sets from as disks
under CMS:

o Read-password-protected data sets are not read.

o RACF password protection is ignored.

o BDAM and IS AM data sets are not read.

o Multivolume data sets are read as single-volume data sets.
End-of-volume is treated as end-of-file and there is no end-of-volume
switching.

o Keys in data sets with keys are ignored; only the data is read.

o User labels in user-labeled data sets are bypassed. See "Tape Labels in
eMS" in the VM/ SP CMS User's Guide for details.

o Results may be unpredictable if two DCBs access the same data set at
the same time.

o An Indexed VTOC on an as disk is read the same as a standard as
VTOC since there is no special support in CMS for this.

The following restrictions apply when you are reading as data sets from
tapes under eMS:

o Read-password-protected data sets are read.

o RACF password protection is ignored.

o User labels in user-labelled data sets are bypassed. See "Tape Labels in
CMS" in the VM/ SP CMS User's Guide for details.

o Results may be unpredictable if two DCBs access the same data set at
the same time.

The ACCESS Command

Before CMS can read an as data set that resides on a non-CMS disk, you
must issue the eMS ACCESS command to make the disk available to CMS.

The format of the ACCESS command is:

ACCESS cuu mode [/ext]

Chapter 8. Developing OS Programs under CMS 161

l..._._. __ ._ _. __ . __ __ _. __ . ____ ... ___ _. ___ . _____ ._ .. _. _______ . ___ .. __ . _________________ .. _.,, ______________ --"

For more details, see the VM/ SP CMS Command Reference. You must not
specify options or file identification when accessing an as disk.

The FILEDEF Command

Specifying the ddname

Whenever you execute an as program under CMS that has input and/or
output files or you need to read an as data set onto a CMS disk, you must
fir~t identify the files to CMS with the FILEDEF command. The FILEDEF
command in CMS performs the same functions as the data definition (DD)
card in as job control language (JCL). The data definition card describes
the input and output files.

When you enter the FILEDEF command, you specify:

o The ddname
o The device type
o A file identificatioI1, if the device type is DISK
o Type of label on your tape file, if tape label processing is specified
o Options (if necessary).

Some guidelines for entering these specifications follow.

If the FILEDEF command is issued for a program input or output file, the
ddname must be the same as the ddname or file name specified for the file
in the source program. For example, you can have an assembler language
source program that contains the line:

I~FILE DCB DDNAME=INPUTDD,MACRF=GL,DSORG=PS,RECFM=F,
LRECL=80

For a particular execution of this program, you want to use as your input
file a CMS file on your A-disk that is named MYINPUT FILE. You must
then issue a FILEDEF for this file before executing the program:

filedef inputdd disk myinput file al

If the input file you want to use is on an as disk accessed as your C-disk
and it has a data set name of PA YROLL.RECORDS.AUGUST, then your
FILEDEF command might be:

filedef inputdd cl dsn payroll.records.august

162 VM/SP eMS for System Programming

[.-.-.-=-=-~:_.~ __ . ________ . _____ . _______ ~==-,,:===----"" ---... --.-.. -.-----_.-_-_--._ ____ .. _.-.-._ .. _.--._.-.. -_-_-.. _ _-.-_ ... -_ .. _ ... _ ... _ .. _. -._--_.-.. -....... --_ .. -.-- =:.::....J

Specifying the Device Type

For input files, the device type you enter on the FILEDEF command
indicates the device from which you want records read. It can be DISK,
TERMINAL, READER (for input from real cards or virtual cards), or T APn
(for tape). Using the above example, if your input file is to be read from
your virtual card reader, the FILEDEF command might be as follows:

filedef inputdd reader

Or, if you were reading from a tape attached to your virtual machine at
virtual address 181 (T API):

filedef inputdd tapl

For output files, the device you specify can be DISK, PRINTER, PUNCH,
TAPn (tape), or TERMINAL.

If you do not want any real I/O performed during the execution of a
program for a disk input or output file, you can specify the device type as
DUMMY:

filedef inputdd dummy

Entering File Identifications

If you are using a CMS disk file for your input or output, specify:

filedef ddname disk filename filetype filemode

Note: If * is used for the filemode of an output file, unpredictable results
may occur.

The filemode field is optional; if you do not specify it, your A-disk is
assumed.

If you want an output file to be constructed in as simulated data set
format, you must specify the filemode number as 4. For example, if a
program contains a DCB for an output file with a ddname of OUTPUTDD
and you are using it to create a CMS file named DAILY OUTPUT on your
B-disk, specify:

filedef outputdd disk daily output b4

If your input file is an as data set on an as disk, you can identify it in
several ways:

o If the data set name has only two qualifiers, for example
HEALTH.RECORDS, you can specify:

filedef inputdd disk health records bI

o If it has more than two qualifiers, you can use the DSN keyword and
enter:

Chapter 8. Developing as Programs under'CMS 163

E]G~G~(Q)[])D~U~ 08 r~~©@J~~8m9
" [----------_ , _. __ ._._----_._-------------_._--._----------.---..... -... --..... --=~-==~----.-.. -.--.j

filedef inputdd bl dsn health records august 1974
-- or --

filedef inputdd bl dsn health.records.august.1974

Or you can request a prompt for a complete data set name:

filedef inputdd bl dsn ?
Enter data set name:
health.records.august.1974

Note: When you enter a data set name using the DSN keyword either
with or without a request for prompting, you should omit the device
type specification of DISK, unless you want to assign a CMS file
identifier, as in the example below.

• You can also relate an OS data set name to a CMS file identifier:

filedef inputdd disk ossim file cl dsn monthly records
-- or --

filedef inputdd disk ossim file cl dsn monthly.records

Then you can refer to the OS data set MONTHLY.RECORDS by using
the CMS file identifier, OSSIM FILE:

state ossim file c

When you do not issue a FILEDEF command for a program input or output
file or if you enter only the ddname and device type on the FILEDEF
command, such as:

filedef oscar disk

then CMS issues a default file definition, as follows:

FILEDEF ddname DISK FILE ddname Al

where ddname is the ddname you ~ssigned in the DDNAME operand of the
DCB macro in your program or on the FILEDEF command. For example, if
you assign a ddname of OSCAR to an output file and do not issue a
FILEDEF command before you execute the program, then the CMS file
FILE OSCAR Al is created when you execute the program. If the filetype
of a CMS input file, FILE ddname AI, is the same as the assigned
DDNAME, the file can be identified by a default file definition. Even
though an input file can be defined explicitly or by default, if an attempt is
made to read the file and the file is not found, unpredictable results may
occur.

Specifying eMS Tape Label Processing

You can use the label operands on the FILEDEF command to indicate that
CMS tape label processing is not desired (this is the default). If CMS tape
label processing is desired you can use the label operands on the FILEDEF
command to indicate the types of labels on your tape. See the VM/ SP eMS
User's Guide for a description of CMS tape label processing.

164 VM/SP eMS for System Programming
~

U~)()U0~Q)~JUUJ~~ ((08 C)Gf(JO[jJL}UV~D
[_." ... _."." .. _ .. " .. _." .': _. _ ... _""_. m .. _ ... ""'._n __ '" " ". _'.". " ___ " __ "_._._""_"._." __ "" .. _." "_ ... " ,_, __ "_."". __ ,·._·"_._. __ ._u_._,_,· ___ ,_","",_ ._ "_ .. " ___ '_' ____ . __ ___ " ____ " __ "_"_._.]

Specifying Options

The FILEDEF command has many options; those mentioned below are a
sampling only. For complete descriptions of all the options of the FILEDEF
command, see the VM/ SP CMS Command Reference.

Supplying File Format Information: If you are using the FILEDEF
command to relate a data control block (DCB) in a program to an input or
output file, you may need to supply some of the file format information on
the FILEDEF command line, such as the block size (BLOCK), record length
(LRECL), record format (RECFM), and data set organization (DSORG). For
example, if you have coded a DCB macro for an output file as follows:

OUTFILE DCB DDNAME=OUT,MACRF=PM,DSORG=PS

then, when you are issuing a FILEDEF for this ddname, you must specify
the format of the file. To create an output file on disk blocked in as
simulated data set format, you could issue:

filedef out disk rnyoutput file a4 (recfrn fb lrecl 80 block 1600

To punch the output file onto cards, you would issue:

filedef out punch (lrecl 80 recfm f

You can omit file format information on the FILEDEF command line
whenever it is supplied on the DCB macro or whenever your file exists on
an as disk. For existing CMS disk files, format information is required
only if you want OS-simulated data set formats other than F or V. When
the OPEN macro instruction is executed, the CMS simulation of the as
OPEN routine initializes the data control block (DCB). The DCB fields are
filled in with information from the DCB macro instruction, the information
specified on the FILEDEF command, or if the data set already exists, the
data set label. However, if more than one source specifies information for a
particular field, only one source is used.

The order in which the DCB fields are filled follows:

1. The DCB macro instruction in your program
2. The fields you had specified on the FILEDEF command
3. The data set label if the data set already exists.

The DCB macro instruction takes precedence over the FILEDEF and the
data set label. The FILEDEF takes precedence over the data set label.
Data set label information from an existing CMS file is used only when the
OPEN is for input or update, otherwise, the OPEN routine erases the
existing file.

You can modify any DCB field either before the data set is opened or
through a data control block open exit. CMS supports only the data
control block exit of the EXIT LIST (EXLST) options. When the data set is
closed, the DCB is restored to its original condition. Fields that were

Chapter 8. Developing OS Programs under CMS 165

._ ... _ .. -.. ~~::-.-...:.::: .. -.. --------- ____ . __ . __ .. ___ .. _ .. _ ... - .. _ .. __ _--_ ... _---_ _---- ... _-_ .. -. __ ... _-_. __ .. _----_._--_ ... _._-_. __ ._ ... _ _._-------J

merged in at OPEN time from the FILEDEF and the data set label are
cleared.

Keeping File Definitions: Usually, when you execute one of the language
processors, all existing file definitions are cleared. If the development of a
program requires you to recompile and re-execute it frequently, you might
want to use the PERM option when you issue file definitions for your input
and output files. For example:

cp spool punch to *
filedef indd disk test file al (lrecl 80 perm
filedef outdd punch (lrecl 80 perm

In this example, since you spooled your virtual punch to your own virtual
card reader, output files are placed in your virtual reader. You can either
read or delete them.

All file definitions issued with the PERM option stay in effect until you log
off, specifically clear those definitions, or redefine them:

filedef indd clear
filedef outdd tapl (lrecl 80

In the above example, the definition for INDD is cleared; OUTDD is
redefined as a tape file.

When you issue the command:

filedef * clear

all file definitions are cleared, except those you enter with the PERM
option.

When a program abends, or when you issue the HX Immediate command, all
file definitions are cleared, including those entered with the PERM option.

Adding Records to a File: When you issue a FILEDEF command for an
output file and assign it a CMS file identifier that is identical to that of an
existing CMS file, the existing file is replaced by the new output file if
anything is written to that ddname. If you want, instead, to have new
records added to the bottom of the existing file, you can use the DISP MOD
option:

filedef outdd disk new update al (disp mod

The file must be on a disk accessed as read/write. Note that an extension of
a disk is read/only. When adding new records using the DISP MOD option,
use an editor to delete the end-of-file (EOF) mark at the end of the existing
file for fixed-block (FB) OS simulated files (filemode of A4).

Specifying a Member Name of a Data Set: If the file you want to read is
a member of an OS partitioned data set (or a eMS MACLIB or TXTLIB),
you can use the MEMBER option to specify the member name. For
example:

166 VM/SP eMS for System Programming

[~JC:")vC9~O[)Ou~O (C)~3 LJG'()Ou'8uulO
[-=-=----:~::~~==-=-----.==~_-=_~ ___ ~~_:.:.:::_~=_:_.:_.:::~~:.:~~_~=_ __ =:~-~-:~=-~=~_--=--:: __ ~~-:.==:.:_~=:=~_-_==~:=_~::_.::~=-_=__====..::._=__=~_:.::_~:::-~~~~ ____ =~-__ J

filedef test c dsn sysl.maclib (member test

defines the member TEST from the OS macro library SYS1.MACLIB.

Receiving Control during 110 Operation: The AUXPROC option is valid
only when FILEDEF is executed by an internal program call. It cannot be
entered as a terminal command. The CMS language interface programs use
this feature for special I/O handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an auxiliary
processing routine, allows that routine to receive control from DMSSEB
before any device I/O is performed. At the completion of its processing, the
auxiliary routine returns control to DMSSEB signaling whether or not I/O
has been performed. If it has not been done, DMSSEB performs the
appropriate device I/O.

When control is received from DMSSEB, the general purpose registers
contain the following information:

GPR2
GPR3
GPR8

GPR11
GPR14
GPR15

all other registers

= data control block (DCB) address
= base register for DMSSEB
= CMS OPSECT address
= file control block (FCB) address
= return address in DMSSEB
= auxiliary processing routine address
= work registers

The auxiliary processing routine must provide a save area to save the
general purpose registers. This routine must also perform the save
operation. DMSSEB does not provide the address of a save area in general
purpose register 13, as is usually the case. When control returns to
DMSSEB, the general purpose registers must be restored to their original
values. Control is returned to DMSSEB by branching to the address
contained in general purpose register 14.

GPR15 is used by the auxiliary processing routine to inform DMSSEB of
the action that has been or should be taken with the data block as follows:

GPR15=0 No I/O performed by AUXPROC routine. DMSSEB
performs I/O.

GPR15 < 0 I/O performed by AUXPROC routine and error was
encountered. DMSSEB takes error action.

GPR15 > 0 I/O performed by AUXPROC routine with residual count
in GPR15. DMSSEB returns normally.

GPR15 = 65,536 I/O performed by AUXPROC routine with zero residual
count.

Chapter 8. Developing as Programs under CMS 167

L.:~ _________ ._. _. ___ . __ :::J

Passing Information to the DMSTVI Routine: An interface routine,
DMSTVI, can be used to give control to a different multivolume switching
routine than the one supplied with VM (DMSTVS) or a tape management
system.

Use the new SYSP ARM option to pass information not included on the
FILEDEF or LABELDEF command to the DMSTVI routine.

When DMSTVI is called, the general-purpose registers contain the
following information:

GPR1
GPR 14
GPR 15

= Address of a parameter list defined by the TVISECT DSECT
= Return address
= Entry point address

The calling routine saves and restores the register contents.

When DMSTVI'gets control, it must check the call function keyword in the
register 1 PLIST. The call function keyword identifies the function being
processed when DMSTVI is called. DMSTVI should use the information in
the PLIST to build a command or to invoke the tape volume switching
routine or tape management system.

When DMSTVI is called during FILEDEF processing, only the call function
(SYSP ARM) and the SYSP ARM string address and length field are filled in.
The other fields are set to zeroes.

Because DMSTVI gets control during OPEN macro processing before any
I/O is done, you do not have to mount a tape before OPEN is issued. The
interface routine can mount the tape before returning control to OPEN
macro processing.

If you specify only the first volid of a multivolume tape and the end of the
first volume is reached, DMSTVI gets control with a call function of 'EOV'
and a volid of SCRATC. The tape management system can mount the next
volume if it knows what tape is currently mounted on the drive and the
volid of the next volume in the series.

A 44 character fileid can now be entered with the LABELDEF command.
The 44 character fileid is passed to DMSTVI during OPEN, EOV, and
CLOSE macro processing. DMSTVI should check the TVISCRAT field in
the register 1 PLIST to determine if a tape was requested from the tape
management system. DMSTVI checks the TVISCRAT field by giving a
fileid.

If the TVISCRAT field contains 'SCRATCH', a scratch tape was requested.
If this field contains 'NOSCRATC', a scratch was not requested -- 'SCRATC'
was put in TVIVOLID as a default. If a fileid is also specified (TVIFILID),
a tape containing this fileid was requested. If you want to mount a tape by
specifying just the fileid, you should not specify any volid on FILEDEF or
LABELDEF (including 'SCRATCH').

168 VM/SP eMS for System Programming

ITJGnJ0)~(0[)Uu uU 08 [JutGJOu'c:lu'u'uG
c-------.... --... --. -.-.---------.. ----------.---.----.. --------.------- .. --... ---.--.----.----.. ----.----.-----.--.--.-.. -.. -.- .. -.----------- ---.-_==-:::.::.:~

If no fileid is specified on the LABELDEF command, the TVIFID field in
the register 1 PLIST contains all zeros. The system uses the ddname
(TVIFILE) as the default.

DMSTVI must return to the calling routine when processing is complete.

Creating eMS Files from OS Data Sets

If you have data sets on OS disks, on tapes, or on cards, you can copy them
into CMS files so that you can edit, modify, or manipulate them with CMS
commands. The CMS MOVEFILE command copies OS (or CMS) files from
one device to another. You can move data sets from any valid input device
to any valid output device.

Before using the MOVEFILE command, you must define the input and
output data sets or files and assign them ddnames using the FILEDEF
command. If you use the ddnames INMOVE and OUTMOVE, then you do
not need to specify the ddnames when you issue the MOVEFILE command.
For example, the following sequence of commands copies a CMS disk file
into your virtual card punch:

filedef inmove disk diskin file al
filedef outrnove punch
rnovefile

The result of these commands is effectively the same as if you had issued
the command:

punch diskin file (noheader

The example does, however, illustrate the basic relationship between the
FILEDEF and MOVEFILE commands. In addition to the MOVEFILE
command, if the OS input data set is on tape or cards, you can use the
TAPPDS or READCARD command to create CMS files. These are also
discussed below.

Note: The MOVEFILE command does not support data containing spanned
records. In addition, when copying a variable length data set (RECFM = V
or VB) from an OS disk to a CMS disk, the logical record length (LRECL)
of the file that is created on the CMS disk is equal to the size of the largest
record in the data set being copied. If the file that is being created has a
filemode of 4, the logical record length will be equal to the LRECL of the
largest record plus 8 bytes. The actual LRECL of the new file can be
determined by using the CMS LISTFILE command.

Copying Sequential Data Sets from Disk

The MOVEFILE command copies a sequential OS disk data set from a
read-only OS disk into an integral CMS file on a CMS read/write disk. You
use FILEDEF commands to identify the input file disk mode and data set
name:

filedef inmove cl dsn sales.manual

Chapter 8. Developing as Programs under CMS 169

l ____ . ___ ._ __ .. ____ . _____ _._. __ . __ .. ___ .. ___________ ... _. ___ . ____ ... _. ______ .. _. __ ., _______ . __ ._.~ ... __ =:=J

the CMS output file's disk location and fileid:

filedef outmove disk sales manual al

and then you issue the MOVEFILE command:

movefile

Copying Partitioned Data Sets From Disk

The MOVEFILE command can copy partitioned data sets (PDS) into CMS
disk files and create separate CMS files for each member of the data set.
You can have the' entire data set copied, or you can copy only a selected
member. For example, if you have a partitioned data set named
ASSEMBLE.SOURCE whose members are individual assembler language
source files, your input file definition might be:

filedef inmove cl dsn assemble source
or

filedef inmove cl dsn assemble. source

To create individual CMS ASSEMBLE files, you would issue the output file
definition as:

filedef outmove disk qprint assemble al

Then use the PDS option of the MOVEFILE command:

movefile (pds

When the CMS files are created, the filetype on the output file definition is
used for the filetype and the member names are used instead of the eMS
filename you specified.

If you want to copy only a single member, you can use the MEMBER
option of the FILEDEF command:

filedef inmove disk assemble source c (member qprint

and omit the PDS option on the MOVEFILE command:

movefile

The following figure summarizes the' various ways that you can create CMS
files from OS data sets.

170 VM/SP eMS for System Programming

r'" -.... --.- ... _- ... --- ... - .. --.-...... - _ .. _._ _n_ -.- -- ... -.- --------.------.-----.-----.- .--.--._-- -.--.------.... - .. -- "_'" ._._._. _. ______ _ _ ... __ .. _ .. _ ... _. _ __ "'"'' • __ ._ ... __ • __ . __ ... " _ .. n_ __ ... __ ..]

Input File: An as Sequential Data Set Named: COMPUTE.TEST.RECORDS

Disk:
OS RIO
C-disk

Tape:
181

Cards:

CMS Command Examples

filedef indd c1 dsn compute test records
filedef outdd disk compute records a1
movefile indd outdd

filedef inmove tap1 (Irecl 80
filedef outmove disk test records a1
movefile

tappds newtest compute (nopds

filedef cardin reader
filedef diskout disk compute cards a1
movefile cardin diskout

readcard compute test

CMS Output File

COMPUTE RECORDS A1

TEST RECORDS A1

NEWTEST COMPUTE A1

COMPUTE CARDS A1

COMPUTE TEST A1

Input file: as Partitioned Data Set Named: TEST.CASES

Disk:
OS RIO
C-disk

Tape:
182

Members named: SIMPLE, COMPLEX, MIXED

CMS Command Examples

filedef infile c1 dsn test cases
filedef outfile disk new testcase a1
movefile infile outfile (pds

filedef in c1 dsn test cases (member sim'ple
filedef run disk
movefile in run

tappds * test run (tap2

CMS Output File(s)

SIMPLE TESTCASE A1
COMPLEX TESTCASE A1
MIXED TESTCASE

FILE RUN A1

SIMPLE TESTRUN A1
COMPLEX TESTRUN A1
MIXED TESTRUN A1

Figure 20. Creating CMS Files from OS Data Sets

Using eMS libraries

CMS provides three types of libraries to aid in OS program development:

o Macro libraries contain macro definitions and/or copy files.

o Text, or program libraries contain relocatable object programs
(compiler output).

o LOADLIB libraries contain link edit files (load modules).

These CMS libraries are like as partitioned data sets; each has a directory
and members. Since they are not like other CMS files, you create, update,
and use them differently than you do other CMS files. Although these
library files are similar in function to as partitioned data sets, as macros

Chapter 8. Developing as Programs under CMS 171

[Q)Q'\7G~@L3Uuu~ 08 LJ~1(Q)f~C10Uu\)O
r...::.~~=-_. __________ .. ________ ~ _____ . ____ . ___ .. ______ .. _____ .. _____ . ______ .. _______ ._ .. ________ . __________

should not be used to update them. Macro libraries are discussed below;
text libraries are discussed under "TEXT Libraries (TXTLIBs)" on page 181,
and LOADLIB libraries are discussed under "OS Module Libraries and
CMS LOADLIBS" on page 183.

Macro Libraries (MACLIBs)

The MACLIB Command

A CMS macro library has a filetype of MACLIB. You can create a
MACLIB from files with filetypes of MACRO or COPY. A MACRO file may
contain macro definitions. COpy files contain predefined source
statements.

The MACLIB command performs a variety of functions. You use it to:

o Create the MACLIB (GEN function).
o Add, replace, or delete members (ADD, REP, and DEL functions).
o Compress the MACLIB (COMP function).
o List the contents of the MACLIB (MAP function).

Descriptions of these MACLIB command functions follow.

Creating a Macro Library: The GEN (generate) function creates a CMS
macro library from input files specified on the command line. The input
files must have filetypes of either MACRO or COPY. For example:

mac lib gen osmac access time put regequ

creates a macro library with the file identifier OSMAC MACLIB Al from
macros existing in the files with the file identifiers:

ACCESS {MACRO} , TIME { MACRO} , PU.T {MACRO}, and REGEQU {MACRO}.
COPY COpy . COpy . COpy

If a file named OSMAC MACLIB Al already exists, it is erased.

Assume that the files ACCESS MACRO, TIME COPY, PUT MACRO, and
REGEQU COpy exist and contain macros in the following form:

ACCESS MACRO

GET

PUT

COpy

*COPY TTIMER
TTIMER

*COPY STIMER
STIMER

PUT MACRO

PUT

REGEOU COpy

XREG

YREG

The resulting file, OSMAC MACLIB AI, contains the members:

GET
PUT
TTIMER

STIMER
PUT
REGEQU

1 72 VM/SP eMS for System Programming

[D)G\'Je~(Q~)Uuut1 ([DS ~~u"@[jU"8uJ~S
r----.--- ________________ m _________ ----------- ----------------------.--------.---)

The PUT macro, which appears twice in the input to the command, also
appears twice in the output. The MACLIB command does not check for
duplicate macro names. If, at a later time, the PUT macro is requested from
OSMAC MACLIB, the first PUT macro encountered in the directory is
used.

When COpy files are added to MACLIBs, the name of the library member is
taken from the name of the COPY file or from the *COPY statement, as in
the file TIME COPY, above.

Note: Although the file REGEQU COpy contained two macros, they were
both included in the MACLIB with the name REGEQU. When the input
file is a MACRO file, the member name(s) are taken from macro prototype
statements in the MACRO file.

Adding a Member to a Macro Library: The ADD function appends new
members to an existing macro library. For example, assume that OSMAC
MACLIB Al exists as created in the example in the explanation of the GEN
function and the file DCB COpy exists as follows:

*eopy DeB
DeB macro definition

*eOpy DeBD
DeBD macro definition

If you issue the command:

maclib add osmac deb

the resulting OSMAC MACLIB Al contains the members:

GET
PUT
TTIMER
STIMER

PUT
REGEQU
DeB
DeBD

Replacing a Member of a Macro Library: The REP (replace) function
deletes the directory entry for the macro definition in the files specified. It
then appends new macro definitions to the macro library and creates new
directory entries. For example, assume that a macro library MYMAC
MACLIB contains the members ALPHA, BETA, and SIGMA, and that the
following command is entered:

maclib rep mymac alpha sigma

The files represented by file identifiers ALPHA MACRO and SIGMA
MACRO each have one macro definition. After execution of the command,
MYMAC MACLIB contains members with the same names as before, but
the contents of ALPHA and SIGMA are different.

Chapter 8. Developing as Programs under OMS 1 73

[liG~rrG~(Q)[:vnuuQJ 08 [Ju'QQJr@u1u6
c=-. __ =-_____ , ____ __ ~~_._.~. __ ._. ___ J

Deleting a Member of a Macro Library: The DEL (delete) function
removes members from the macro library directory and compresses the
directory so there are no unused entries. The macro definition still
occupies space in the library, but since no directory entry exists, it cannot
be accessed or retrieved. If you attempt to delete a macro for which two
macro definitions exist in the macro library, only the first one encountered
is deleted. For example:

mac lib del osmac get put ttimer deb

deletes macro names GET, PUT, TTIMER, and DCB from the directory of
the macro library named OSMAC MACLIB. Assume that OSMAC exists as
in the ADD function example. After the above command, OSMAC MACLIB
contains the following members:

STIMER
PUT
REGEQU
DeBD

Compressing a Macro Library: Execution of a MACLIB command with
the DEL or REP functions can leave unused space within a macro library.
The COMP (compress) function removes any macros that do not have
directory entries. This function uses a temporary file named MACLIB
CMSUTl. For example, the command:

maclib comp mymac

compresses the library MYMAC MACLIB.

Listing Information about Members of a Macro Library: The MAP
function creates a list containing the name of each macro in the directory,
the size of the macro, and its position within the macro library. If you want
to display a list of the members of a MACLIB at the terminal, enter the
command:

maclib map mylib (term

The default option, DISK, creates a file on your A-disk, which has a filetype
of MAP and a filename corresponding to the filename of the MACLIB. If
you specify the PRINT option, the list is spooled to your virtual printer as
well as being written onto disk.

Note: The DISK, PRINT, and TERM options erase the old MAP file.

You can also retrieve information for specific members of the library by
indicating the member names following the MAP operand. For example:

mac lib map mylib swerve yield

returns the MAP output for only members SWERVE and YIELD of MYLIB
MACLIB.

If you want to place that information in the program stack, use the STACK
option of the MAP operand. The information can be stacked FIFO (first-in

174 VM/SP eMS for System Programming

c= -.. " ''.--.-.-----.-.''--''''-.. -.. -.-'' ... -_._''-_ ... _.''-_-.. -_"-_ .. ,,_ .. -_-._ .. -__ ",,-_ ... -_--_ ... -_.-_. _ ... -._." ... _ _--_ .. -_.-._--.,,_-._-. _ .. -_-"_-_-"_-" .. _ ... -_-".-_ .. -_ .. _-."." ,,- .. - ... _._ _· ... _._· .. ""hn._·· •• _ •••....•..•••••• -,

first-out} or LIFO (last-in first-out). The default order when STACK is
specified alone is FIFO. The options STACK, STACK FIFO, and FIFO are
equivalent. The options STACK LIFO and LIFO are equivalent. For
example:

maclib map mylib neutral reverse (stack fifo

stacks in the program stack, the MAP output for the NEUTRAL and
REVERSE members of MYLIB in first-in first-out order.

See "The MAC LIST Command" on page 176 for more information on listing
members of a MAC~IB.

Manipulating MACLIB Members

The following CMS commands recognize MACLIBs and have a MEMBER
option:

o XEDIT (to create and/or edit a specific member).
o PUNCH (to punch a member)
o FILEDEF (to establish a file definition for a member)
o PRINT (to print a member)
o TYPE (to display a member at the terminal)

You can use the editor to create MACRO and COpy files and then use the
MACLIB command to place the files in a library. Once they are in a
library, you can erase the original files, or you can edit a member of a CMS
library using the XEDIT command with the MEMBER option. For
example, entering the command:

xedit mylib maclib al {member swerve

If the SWERVE member does not exist in that library, a new file is created
with a fileid of SWERVE MEMBER Al. If SWERVE is an existing member
of MYLIB MACLIB, you can edit the file.

You can also select members of a specific CMS library to edit from your
MACLIST (invoked by the MACLIST command).

Note: You cannot create a new MACLIB using the MEMBER option of the
XEDIT command. You must use the MACLIB command with the GEN
option to create a new MACLIB.

To extract a member from a macro library, you can use either the PUNCH
or the MOVEFILE command. If you use the PUNCH command, you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *

Then punch the member:

punch testmac maclib {member get noheader

and read it back onto disk:

Chapter 8. Developing OS Programs under CMS 175

r-c-. - .. -.... -.... -. _-.... -... -... _-_.-... _-. __ -.. _-_-__ -_-.-_.::-_._-___ -=-=.:.=_=--=:=-_-.-_=.~=__-.. _._-_._-....::.-___ -_~_=_.:.-.... _-._".-.".-" .. - ... -........ -".-..... _-._ .. -._ .. -: ___ . _"""_,,,.,,,._,. __ '_' ._ .• ____ ._ .. J

The MACLIST Command

readcard get macro

In the above example, the member was punched with the NOHEADER
option of the PUNCH command, so that a name could be assigned on the
READ CARD command line. If a header card had been created for the file,
it would have indicated the filename and file type as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for the
input member name and the output macro or copy name before entering the
MOVEFILE command:

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

This example copies the member ENTER from the ·macro library
TESTCOPY MACLIB into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members
from CMS MACLIBs, each member is. followed by a / / record, which is a
MACLIB delimiter. You can edit the file and use the DELETE
subcommand to delete the / / record.

If you want to move the complete MACLIB to another file, use the
COPYFILE command.

To print asingle member or all members of a macro library, use the CMS
PRINT command with the MEMBER option. To display on the terminal a
single member or all members of a macro library, use the CMS TYPE
command with the MEMBER option.

The MACLIST command displays a list of all members in a specified macro
library. MACLIST provides you with an easy way to select and edit CMS
maclib members. CMS commands can be issued against the members
directly from the displayed list. The commands execute when you press the
ENTER key.

In the MACLIST environment, information that is normally provided by the
MACLIB command (with the MAP option) is displayed under the control of
the System Product editor. You can use XEDIT subcommands to
manipulate the list itself.

The following MACLIST screen was created by issuing the MACLIST
command as follows:

maclist mylib

Note that the members are sorted alphabetically by member name.
Members with the same name are then sorted by index number (least to
greatest).

176 VM/SP eMS for System Programming

r FARRELL MACLIST AO V 130 Trunc=130 Size=18 Line=l Col=l Alt=O '" Cmd Member name Index Records Library name Library type Mode
CAUTION 190 6 MYLIB MACLIB Al
FAST 240 25 MYLIB MACLIB Al
FORWARD 613 57 MYLIB MACI.IB Al
GO 197 25 MYLIB MACLIB Al
GO 615 25 MYLIB MACLIB Al
LTURN 546 55 MYLIB MACLIB Al
NEUTRAL 266 5 MYLIB MACLIB Al
PARK 602 4 MYLIB MACLIB Al
REVERSE 272 118 MYLIB MACLIB Al
RTURN 524 21 MYLIB MACLIB Al
SKID 391 43 MYLIB MACLIB Al
SLOW 671 61 MYLIB MACLIB Al
SLOWER 435 5 MYLIB MACLIB Al
SLOWEST 441 82 MYLIB MACLIB Al
SPEED 2 132 MYLIB MACLIB Al
STOP 607 5 MYLIB MACLIB Al
SWERVE 223 16 MYLIB MACLIB Al
YIELD 135 54 MYLIB MACLIB Al

1= Help 2= Refresh 3= Quit 4= Sort(name) 5= Sort(index) 6= Sort(size)
7= Backward 8= Forward 9= FL In 10= 11= XEDIT 12= Cursor
====>

XED I T 1 File

\. ~

Figure 21. Sample MACLIST Screen

Finding Members in Your MACLIST List: If there are many members in
the maclib, the list may take up more than one screen. To find a member in
your MACLIST list, you can do any of the following:

o Scroll through the list using the PF keys.

PF7 Scrolls backward one full screen.

PF8 Scrolls forward one full screen.

o Rearrange the list using one of the following PF keys:

PF4 Sorts the list by member name. This is how the list is
initially arranged.

PF5 Sorts the list by index (largest first). The most recently
updated members have a greater number.

PF6 Sorts the list by size (largest to smallest).

o Use the XEDIT subcommand LOCATE if you know the member name
that you are looking for.

o Rearrange the list by entering one of the following synonyms on the
command line:

SINDEX Sorts the list by index (greatest to least) within a library.

Chapter 8. Developing as Programs under' CMS 177

r

SLIB

SNAME

SSIZE

.......... _ .. _ .. ___ . ____ __ ~_ __ ... __ . __ ._._._ ._ .. __ .. __ . _________ .. _. __ ._._._ _ .. _._ _ _ .. __ ..1

Sorts the list alphabetically by library fileid.

Sorts the list alphabetically by member name. This is how
the list is initially arranged.

Sorts the list by member size (number of records, greatest
to least).

Entering Commands in the MACLIST Environment: You can type
commands that operate on member names in the list directly on the lines of
the MACLIST display. When you press the ENTER key, all commands
typed on the lines in the file displayed on the current screen are executed.
Symbols can be used to represent operands in the command to be executed.
Symbols are needed if the command to be executed has operands or options
that follow the fileid. For example to issue the PRINT command for this
member of your MACLIST:

NEUTRAL 266 5 MYLIB MACLIB Al

type directly on the line that contains this member as follows:

print /EUTRAL 266 5 MYLIB MACLIB Al

and then press the ENTER key. Refer to the MACLIST command in the
VM/ SP CMS Command Reference for more information about using
symbols in MACLIST.

Another way to issue commands that make use of member names displayed
is to move the current line to the first (or only) member you want the
command to use. Then issue an EXECUTE command (in the form
"EXECUTE lines command") from the XEDIT command line. This method
may be used on both display and typewriter terminals. You can also enter
commands from the MACLIST command line.

Editing a Maclib Member: The MACLIST command allows you to select
and edit a CMS maclib member from the list. To edit a member, position
the cursor on the line that contains the member to be edited and press the
PFl1 key. Otherwise, you can edit a CMS maclib member by using the
XEDIT command with the MEMBER option. For example, to edit the
SWERVE member of MYLIB maclib, enter:

xedit mylib mac lib al (member swerve

If the SWERVE member did not exist in MYLIB MACLIB, a new file is
created with a fileid of SWERVE MEMBER AI.

178 VM/SP eMS for System Programming

~JG~G~O~JUuuO oS lJ[jJOUGJcJOI~G
=-':=-=:":":'=":"::_-=--=':"::"-=:=-:_==-'-~:~-='-'-~.:~~~'-~_:~:': ==~==~~ =~_~~ .. ===--::~.-:=-~~~~=--=--=========-~~-==-=:==-~=~.=-~= ___ =-=::.==~~~_~~...:..:..~_-.:~_=J

Adding and Replacing Maclib Members: When the MEMBER option is
specified for the XEDIT command for a member that does not exist in the
library, a new file is created with the fileid of "membername MEMBER fm."

If the MEMBER option is specified on the XEDIT command for an existing
member of a library, the member is read into a file called "membername
MEMBER fm" for you to edit.

When you issue FILE or SAVE for the new or changed member, the library
directory is updated. The new or changed member and the updated library
directory are added to the end of the library. If the directory already
contains a member with the same name as the one being saved, the old
entry is blanked out, so that the updated member replaces the old version.

Deleting Maclib Members: Use the DISCARD command to delete a member
from a library. DISCARD is equivalent to the CMS command MACLIB
DEL. DISCARD can either be typed in the command area of the line that
describes the member you want discarded, or it can be entered from the
command line (at the bottom of the screen). DISCARD can only be used
while in the FILELIST, RDRLIST, MACLIST, and PEEK command
environments.

Setting MACLIST Defaults: When XEDIT is invoked by the MACLIST
command to display the list, the default XEDIT macro, PROFMLST XEDIT,
is executed. If you want to invoke a different XEDIT macro, you can
specify the PROFILE option with the MACLIST command. For example, to
invoke MACLIST with the MYMCLST XEDIT macro, enter

maclist mylib (profile mymclst

You can do the same with the COMPACT and NOCOMP ACT options of the
MACLIST command.

If you are using an alternate profile most of the time, you may change the
default profile with the DEFAULTS command. For example:

defaults set maclist profile mymclst

Entering the DEFAULTS command with no options provides you with the
status of defaults currently in effect. For example, entering

defaults

after changing the XEDIT macro, returns the following information:

Chapter 8. Developing OS Programs under CMS 179

L _______ .. _ .. _._. __ . _______ ._. __________________ . __________ ._ .. ______ .. __________ .. ___ .. _. __ . ______ ___ ._. ____ . ___ .J

The following default options have been set:

Filelist options = PROFILE PROFFLST NOFILELIST
Help options = SCREEN BRIEF ALL
Maclist options = PROFILE MYMCLST NOCOMPACT
Note options = PROFILE PROFNOTE SHORT LOG NOACK NOTEBOOK ALL
Peek options = PROFILE PROFPEEK FROM 1 FOR 200
Rdrlist options = PROFILE PROFRLST
Receive options = LOG OLDDATE NOTEBOOK ALL
Sendfile options = NEW TYPE NOFILELIST LOG NOACK
Tell options = MSGCMD MSG

To change any default options enter DEFAULTS Set Cmdname Optl <Opt2 .. >

The GLOBAL Command

System MACLIBs

When you want to assemble or compile a source program that uses macro
or copy definitions, you must ensure that the library containing the code is
identified before you invoke the assembler. Otherwise, the library is not
searched. Yo'u identify libraries to be searched using the GLOBAL
command. For example, if you have two MACLIBs that contain your
private macros and copy files whose names are TESTMAC MACLIB and
TESTCOPY MACLIB, you would issue the command:

global maclib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify them. A GLOBAL command remains in effect for the
remainder of your terminal session, until you issue another GLOBAL
MACLIB command or IPL CMS again. To find out what macro libraries
are currently available for searching, issue the command:'

query mac lib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

The macro libraries that are on the system disk contain CMS and OS
assembler language macros you may want to use in your programs. The
MACLIBs are:

o CMSLIB MACLIB contains the CMS macros from VM/370.

o DMSSP MACLIB contains the macros that are new or changed in
VM/SP.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP
should precede CMSLIB in the search order.

o OSMACRO MACLIB contains the OS macros that CMS supports or
simulates or those that require no CMS support.

180 VM/SP eMS for System Programming

o OSMACROI MACLIB contains the macros CMS does not support or
simulate. (You can assemble programs in CMS that contain these
macros, but you must execute them in an OS virtual machine.)

o OSVSAM MACLIB contains the subset of supported OS/VSAM macros.

o TSOMAC MACLIB contains TSO macros.

o DOSMACRO MACLIB contains macros used internally in CMS/DOS.

Note: The DOSMACRO MACLIB contains macros used internally by
CMS/DOS system routines. These macros should not be used in user
written programs.

To obtain a list of macros in any of these libraries, use either the MACLIST
command or the MACLIB command with the MAP function. In the
MACLIST environment, you can issue CMS commands against the members
directly from the displayed list. You can find more information about the
MACLIST command in the VM/ SP CMS Command Reference.

TEXT Libraries (TXTLIBs)

The TXTLIB Command

You may want to keep your TEXT files in text libraries. These files have a
filetype of TXTLIB. You can create a TXT LIB from files with a filetype of
TEXT. Like MACLIBs, TXTLIBs have a directory and members.

TXTLIBs are created and modified by the TXTLIB command, which has
functions similar to the MACLIB command:

o Create the TXTLIB (GEN function).
o Add members to the TXTLIB (ADD function).
o Delete members of the TXTLIB and compress the TXTLIB (DEL

function).
o List the members of the TXTLIB (MAP function).

There is no REP function. You must use a DEL followed by an ADD to
replace an existing member.

Creating a TXTLIB: The TXTLIB command with the FILENAME option
specified reads the object files as it writes them into the library and creates
a directory entry for each filename. If you have a TEXT file named
MYPROG, which has an entry point named BEGIN, create the TXT LIB
named TESTLIB as follows:

txtlib gen testlib myprog (filename

TESTLIB contains a member name MYPROG with an entry point BEGIN.
Specify the member name MYPROG to reference this TXT LIB member. If
you do not specify the FILENAME option, TESTLIB will contain no entry

Chapter 8. Developing as Programs under CMS 181

L __ ___ . ~_, '_H'" O. ___ _.H_ .. _ _ ... _· .. ~ __ . ___ . _____ . ______ ~ __ .~_ ~_ .. ____ .~:._:.:. __ ~-=-I·: ... ____ ~~ __ ~_ .. ____ ~._ _ ~ .. _ _ ... ~_ .. ___ . _____ ... ____ .. _.H._J

for the name MYPROG. You will have to specify the member name BEGIN
to reference this TXTLIB member.

Loading and Executing TXTLIBs: When you want to load members of
TXTLIBs into storage to execute them Gust as you execute TEXT files), you
must issue the GLOBAL command to identify the TXTLIB:

global txtlib testlib
load begin (start

When you specify more than one TXTLIB on the GLOBAL command line,
the order of search is established for the TXTLIBs. However, if the AUTO
option of the LOAD and INCLUDE commands is in effect (it is the default),
CMS searches for TEXT files before searching active TXTLIBs.

When the TXTLIB command processes a TEXT file, it writes an LDT
(loader terminate) card at the end of the TEXT file so that when a load
request is issued for a TXTLIB member loading terminates at the end of the
member. If" you add OS linkage editor control statements to the TEXT file
(using the CMS editor) before you issue the TXTLIB command to add the
file to a TXTLIB, the control statements are processed as follows:

NAME Statement: A NAME statement causes the TXTLIB command to
create the directory entry for the member using the specified name.
Thereafter, when you want to load that member into storage or delete it
from the TXTLIB you must refer to it by the name specified on the NAME
statement.

Note: The FILename option overrides any name card found in a text file.
The name card functions as before, but the specified file name becomes the
membername in the TXTLIB. The name card is the only entry within that
membername of the TXTLIB.

The loader does not use name cards to resolve entry points. It is important
that the name on the name card be the same as the name on the CSECT or
entry card. This will ensure that the loader will find the correct text deck
and loader tables (any external references) will be resolved with the entry
point. If the names differ, the loader will load the text deck based on the
name card (or file name). However, the loader tables will be set up
according to entry or CSECT cards encountered during the load. Any
external reference using the name from the name card will be resolved as
zeros.

ENTRY Statement: If you use an ENTRY statement, the entry point you
specify is validated and checked for a duplicate. If the entry point name is
valid and there are no duplicates in the TEXT file, the entry name is
written in the LDT card. Otherwise, an error message is issued. When this
member is loaded, execution begins at the entry point specified.

182 VM/SP eMS for System Programming

[1'11 "-")11 7("') n ,'\ [~J n r'l (,', ((~;\ (~ ['J r',l '-.~ ,,'1 r 1r"1 r "',) '"-'
L • .J '-'::'" 'J ...: ... U 1(.':; ~ . ~ U u b _} 1:._) ~ U ~ 0 J C. ,j :1 u~..J

L_. __ ._"_. __ ~_~~_. __ .:.... __ ._ .. _._ _ ~"':" __ ~ ____ ~' .. ~ .~.~._._. _____ ...:.._. ___ ~~ __ ._~._.. __ .~...:....:.~~~~~ =~.:~:.: : ~~. ~:..:.:.:~:.:~._. __ ~ ____ .. ' __ ~:::. ~:.:~~:~:.~-]

ALIAS Name: An entry is created in the directory for the ALIAS name
you specify. A maximum of 16 alias names can be used in a single text
deck. You may load the single member and execute it by referring to the
alias name, but you cannot use the alias name as the object of V-type
address constant (VCON) because the address of the member cannot be
resolved.

SETSSI Card: TXTLIB command information you specify on the SETSSI
card is written in bytes 26 through 33 of the LDT card.

All other OS linkage editor control statements and commands are ignored
by the TXTLIB command and written into the TXT LIB member. When you
attempt to load the member, the CMS loader flags these cards as invalid.
These cards may be added as history information to a module if you specify
the HIST option on the LOAD or INCLUDE commands and then issue a
subsequent GENMOD command.

Manipulating TXTLIB Members

The following CMS commands recognize TXTLIBs and have a MEMBER
option:

o PUNCH
o PRINT
o TYPE

Use the CMS PUNCH command with the MEMBER option to punch a
single member or all members of a TXTLIB. Use the CMS PRINT command
with the MEMBER option to print a single member or all members of a
TXTLIB. Use the CMS TYPE command with the MEMBER option to
display on the terminal a single member or all members of a TXTLIB.

OS Module Libraries and eMS LOADLIBS

The OS relocating loader allows the user to load a member of a CMS
LOAD LIB or an OS module library on an OS formatted disk. The OS
LINK, LOAD, ATTACH, and XCTL macros are supported. In addition, the
OSRUN command (which generates a LINK SVC) loads and executes
members directly from the console.

For the LINK, LOAD, ATTACH, and XCTL macros, the libraries specified
in the LOADLIB global list are searched. If the requested member is not
found, CMS looks for a TEXT file by that name. Then, if still not found,
the TXTLIBs specified in the TXTLIB global list are searched for the
member name.

For the OSRUN command, the libraries specified in the LOADLIB global
list are searched. If the member is not found and the user has a $SYSLIB
LOADLIB file, it is searched for the member name. (TEXT files and
TXTLIBs are not considered by OSRUN.)

Chapter 8. Developing OS Programs under CMS lS3"

l-'~-------------~-

Executing OS Module Libraries

If the module to be executed resides in an OS module library on an OS
formatted disk, the disk must be accessed and the library must be defined
(via the FILEDEF command) to make it known to CMS.

For example, access the OS disk as a B-disk at the address 250:

ACCESS 250 B

Suppose SYSl.TESTLIB is an OS module library on the OS disk and
contains the member TESTl. Use the FILEDEF command to relate
SYSl. TESTLIB to the CMS LOADLIB called OSLIB LOADIB:

FILEDEF $SYSLIB DISK OSLIB LOADLIB B DSN SYSl TESTLIB
(DSORG PO RECFM U BLOCK 7294

Now you can refer to the OS module library, SYS1.TESTLIB, by using the
CMS file identifier OSLIB LOADLIB.

Before you try to execute TESTl, use the GLOBAL command to identify the
CMS LOADLIBs to be searched. For example,

GLOBAL LOADLIB OSLIB

Then, the OSRUN command searches OSLIB LOADLIB for the member,
TESTl, to load and execute. For example,

OSRUN TESTl

The DDNAME specified on the FILEDEF command must be $SYSLIB. The
filename (OSLIB), specified on the FILEDEF command, can be any name,
but it must correspond to the name stated in the GLOBAL command. The
filetype must be LOADLIB.

Creating and Executing CMS LOADLIBs

If the program to be executed resides on a CMS disk, use the LKED
command. The LKED command creates a CMS LOAD LIB from a CMS
TEXT file. For example:

LKED TESTFILE

takes the CMS TEXT file, TESTFILE TEXT, and creates the CMS
LOADLIB, TESTFILE LOADLIB. For more information on input to the
LKED command refer to "The LKED Command" on page 186. The CMS
LOADLIB created by the LKED command is an OS simulated partitioned
data set (PDS) namedTESTFILE LOADLIB and contains one member
named TESTFILE.

Before executing TESTFILE, use the GLOBAL command to identify the
LOADLIB to be searched:

GLOBAL LOADLIB TESTFILE

184 VMjSP eMS for System Programming

[~_=-===-~~ .. _...:_~ ______ . ___ .:...: ____ .. _ .. _ .. :...:_ .. ____ ._. _~. _...: ... __ .~_~_ .. _ .. _ ~.: _ .. __ . __ .. _ ... _ ... __:..:. _.:. ___ ... __ .. _. _____ ~_:.::.._ ... _ ... ~_ . ..:_. ___ . ___ .~~...:~_~ __ J

Then the OSRUN command loads, relocates, and executes the TESTFILE
member of TESTFILE LOADLIB:

OS RUN TESTFILE

Maintaining CMS LOADLIBs

Concatenating Files

The LOADLIB command provides the utility necessary to maintain the
CMS LOADLIBs. The following functions are provided:

COpy Copy members from one LOAD LIB to another
Merge complete.LOADLIBs
Copy with SELECT or EXCLUDE

COMPRESS Compress a CMS LOADLIB

LIST LIST members of a CMS LOADLIB

For more detailed information on the LKED, GLOBAL, OSRUN, and
LOADLIB commands, refer to the VM/ SP CMS Command Reference.

To define more than one library with the same DDNAME, use the CONCAT
option of the FILEDEF command. You can concatenate the LOADLIB files
on OS disks with each other and/or with CMS LOADLIB files. Any library
to be searched must be specified in the GLOBAL LOADLIB statement. The
data set with the largest block size should be specified first (both in the
FILEDEF and in the GLOBAL list). CMS files do not require a file
definition. But, if used, the file with the largest block size should be
specified first. The GLOBAL list determines the order in which the
libraries are searched.

For example, search two OS files and a CMS LOADLIB for the member,
THETA, using the following commands:

ACCESS 250 B (if 250 is the address of the OS disk)
FILEDEF $SYSLIB DISK OSLIB LOADLIB DSN SYSl LIBl

(DSORG PO RECFM U BLOCK 7294)
FILEDEF $SYSLIB DISK MYLIB LOADLIB B DSN SYSl LIB2 (CONCAT)
GLOBAL LOADLIB OSLIB MYLIB CMSLIB
OSRUN THETA

Note: The first FILEDEF command for $SYSLIB must describe the first
library filename in the GLOBAL list. Its attribute will be used when the
libraries are searched. It is advisable not to code the CONCAT option on
the first FILEDEF command so that it clears all previous FILEDEFs for
that ddname.

Chapter 8. Developing OS Programs under CMS 185

~)0)t'7G~O[))Uuu[~ 08 [?[j~eC:Ju'OuuuD
c=:::=--=..-__ _

The LKED Command

_________ . ______________ ::::..-==:::J

The LKED command uses the OS Linkage Editor for the actual link of the
TEXT file to the LOADLIB as an executable module. In order to link edit
CMS files, you can issue the FILEDEF command to identify input to the OS
Linkage Editor. Primary LKED input is a data set known to the linkage
editor as SYSLIN, which can be described in the FNAME operand of the
LKED command. The filetype of the input file named in the command line
must be TEXT. Optionally, you can override the FNAME operand by
issuing a FILEDEF that defines SYSLIN as the ddname of an alternate
primary input source. If your alternate input is a CMS file, the choice of
filetype is unrestricted. The contents of the SYSLIN dataset may be:

1. Object text such as assembler or compiler output
2. Linkage editor control statements
3. A combination of object text and control statements.

Linkage editor control statements can be inserted before, between, and after
object modules and other control statements. Editing procedures can be
used to construct files to meet your requirements. Linkage editor
INCLUDE statements may be used to designate explicitly the following files
or file members as secondary linkage editor input:

1. CMS TEXT files
2. Members of CMS TXTLIB files
3. Members of CMS LOADLIB files
4. Members of OS object libraries
5. Members of OS load libraries.

A FILEDEF must be issued before the LKED command to define a unique
ddname for each file to be included as secondary linkage editor input. An
INCLUDE statement in the SYSLIN dataset must specify the ddname
assigned to the file by your FILEDEF. For library files, the statement must
also specify all members of the library that are to be included as input. The
use of all FILEDEF commands and INCLUDE statements to identify input
files is shown in the following examples.

CMS commands:

FILEDEF LIBDEF DISK MYLIB TXTLIB B
FILEDEF TXTDEF DISK MYFILE TEXT C

SYSLIN input:

INCLUDE LIBDEF(CSECT1,CSECT2)
INCLUDE TXTDEF

INCLUDE statements must begin in column 2. The applicable statement
formats are described in the 08/ VB Linkage Editor and Loader.

When SYSLIN input to the LKED command is an assembled object file in
fixed-block format residing on an OS disk, the RECFM FBS option of the
FILEDEF command must be specified. The following example shows

186 VM/SP eMS for System Programming

~j(Y\JG~(O~)UU·l1~j «JS ~JuJ()tJu'(Ju {MJ
c= ... -.-.-- .. -.. -----... -- ... ----.-.--... -... --.. ---.-.-.. ------------.. -.----.--.-.. -.. -_ .. _ _ .. -._. --_ .. --_-.. .._ ... U - ••• -. -.--..-. '.-.:... nuo •••• - .• ---.-.-.--.- .-- ••••••. ---.--.-•• -- •. ---.------ .• - •..•• - •. - .~.- .- •.•• -.-)

FILEDEF commands and SYSLIN input to identify a member of an OS
object library and a CMS TXTLIB.

CMS commands:

FILEDEF OSOBJ DISK OBJECT FILE Q DSN SYS1 FEOBJ (RECFM FBS
LRECL 80 BLOCK 3120

FILEDEF TXTDEF DISK NEWLIB TXTLIB B

SYSLIN input:

INCLUDE OSOBJ(MEMBER1)
INCLUDE TXTDEF(CSECT1)

Automatic library search is available for either CMS or OS type library
members if the FILEDEF for the dataset to be searched specifies SYSLIB as
the ddname. Additional libraries can be selected for automatic search by
placing linkage editor LIBRARY statements in your SYSLIN input file.
Each library statement must contain the associated ddname and a list of
members within the library to be included in the search. A FILEDEF must
be issued before the LKED command to assign a unique ddname to each
dataset to be searched. The library search conducted during a single
linkage editor execution is limited to either object-type or load-type
modules and may not combine both types. The CONCAT option of the
FILEDEF command is not valid for LKED input datasets. To expand the
use of the automatic SYSLIB search, the user may combine the members of
several CMS libraries into a single composite library. The automatic
search facility applies to CMS TXTLIBs and LOADLIBs and to OS object
libraries and LOAD libraries. The following example shows FILEDEF
commands and SYSLIN input for an automatic library search.

CMS commands:

FILEDEF SYSLIB DISK SEARCH1 TXTLIB B
FILEDEF LIBDEFA DISK SEARCH2 TXTLIB C
FILEDEF LIBDEFB DISK OSTEXT LIBRARY D DSN OBJMODS

SYSLIN input:

LIBRARY LIBDEFA(CSECT1,CSECT2)
LIBRARY LIBDEFB(MEMBER1,MEMBER2)

LIBRARY statements must begin in column 2. The GLOBAL command is
not needed to identify linkage editor input libraries. For LOADLIB input
to the linkage editor, the RECFM U option of the FILEDEF command must
be specified.

The default FILEDEF commands issued by the LKED command for the
ddnames presented to the Linkage Editor are as follows:

Chapter 8. Developing as Programs under CMS 187

[DQvG~CV[vO~u0J O~~ L")U'80u~ClG1uS
c::~~:~~==-._==-~:=:=======--:-:-:~ _. __ _ ... _._ .. _______ . ____ _. _____ ._._. ___ . ______ . ___ .. _ .. __ . ___ . _____ ._._. __ ._ ._. ________ ._ .. _.::-.:J

FILEDEF SYSLIN DISK FNAME TEXT * (RECFM F BLOCK 80 NOCHANGE
FILEDEF SYSLMOD DISK fname LOADLIB Al (RECFM U BLOCK 260 NOCHANGE
-or-
FILEDEF SYSLMOD DISK libname LOADLIB Al (RECFM U BLOCK 260 NOCHANGE
FILEDEF SYSUTI DISK fname SYSUTI *
FILEDEF SYSPRINT DISK fname LKEDIT Al
-or-
FILEDEF SYSPRINT PRINTER
-or-
FILEDEF SYSPRINT DUMMY

At the completion of the LKED command, all FILEDEFs that do not have
the PERM option are erased.

OS Data Management Simulation

The disk format and data base organization of eMS are different from those
of OS. A eMS file produced by an OS program running under eMS and
written on a eMS disk has a different format from that of an OS data set
produced by the same OS program running under OS and written on an OS
disk. The data is exactly the same, but its format is different. (An OS disk
is one that has been formatted by an OS program, such as the Device
Support Facility.) eMS does not support multi-buffering for unit record
devices. There is one DeB per device, not per file.

Handling Files that Reside on eMS Disks

eMS can read, write, or update any OS data that resides on a eMS disk.
By simulating OS macros, eMS simulates the following access methods so
that OS data organized by these access methods can reside on eMS disks:

o BDAM

o BPAM

(direct) -- identifying a record by a key or by its relative
position within the data set.

(partitioned) -- seeking a named member within data set.

Note: Two BPAM files with the same filetype cannot be
updated at the same time.

o BSAM/QSAM (sequential) -- accessing a record in a sequence in relation
to preceding or following records.

o VSAM

188 VM/SP eMS for System Programming

(direct or sequential) -- accessing a record sequentially or
directly by key or address.

Note: eMS support of OS VSAM files is based on
VSE/VSAM. Therefore, the OS user is restricted to those
functions available under VSE/VSAM. See the section
"eMS Support for OS and VSE/VSAM Functions" for
details.

l ___ ~,~ _____ . __________ . ___ _

[jJGt7G~GJ~)DuutJ OS lJu'IDU[j'cJu u-~G
_ __ --_-------:- ---- ------ -- ---: __ ~===-=~~~=~~~ ___ ~=_~~~~~:::":~~~_~_~_:::':::J

Refer to Figure 22 on page 189 and "OS Macros" on page 191, then read
"Access Method Support" on page 199 to see how CMS handles these access
methods.

Since CMS does not simulate the indexed sequential access method (ISAM),
no OS program using ISAM can execute under CMS. Therefore, no
program can write an indexed sequential data set on a CMS disk.

Handling Files that Reside on OS Disks

By simulating OS macros, CMS can read, but not write or update~ OS
sequential and partitioned data sets that reside on OS disks. However, an
OS sequential or partitioned data set that resides on an OS disk can be
written or updated only by an OS program running in an OS system.

CMS can execute programs that read and write VSAM files from OS
programs written in the VS BASIC, COBOL, PL/I, VS/APL, and VS
FORTRAN programming languages. eMS also supports VSAM for use with
DOS/VS SORT/MERGE. This CMS support is based on the VSE/VSAM
Program Product and, therefore, the OS user is limited to those VSAM
functions that are available under VSE/VSAM.

Simulating OS Supervisor Calls

IH~Cl'O SVC
N'anlC NUl11.ber Function

XDAP 00 Reads or writes direct access volumes

EXCP 00 Executes graphic channel programs for graphic access
method (GAM)

WAIT 01 Waits for an I/O completion

POST 02 Posts the I/O completion

EXIT/RETURN 03 Returns from a called phase

GETMAIN 04 Conditionally acquires user storage

FREEMAIN 05 Releases user-acquired storage

GETPOOL - Simulates as SVC 10

FREEPOOL - Simulates as SVC 10

LINK 06 Links control to another phase

XCTL 07 Deletes, then links control to another load phase

LOAD 08 Reads a phase into storage

DELETE 09 Deletes a loaded phase

GETMAIN/FREEMAIN 10 Manipulates user free storage

TIME 11 Gets the time of day

Figure 22 (Part 1 of 3). Simulated OS Supervisor Calls

Chapter 8. Developing as Programs under CMS 189

[Q)G~C~~(Q)~])U~ll[j 08 fV~1(Q)fDu1@uuuG
[•. _._. __ _. __ ... ____ ._. __ . _____ ._. _____ . ______ . _________ ._._1.. ___ _ -_ ... __ ._--_ .. _---------_ _--_ .. _._._-_. __ ._-----J

Macro SVC
Name Number Function
ABEND 13 Terminates processing

SPIE 14 Allows processing program to handle program
interrupts

RESTORE 17 Effective NOP

BLDL 18 Builds a directory for a partitioned data set

FIND 18 Locates a member of a partitioned data set

OPEN 19 Activates a data file

CLOSE 20 Deactivates a data file

STOW 21 Manipulates partitioned directories

OPENJ 22 Activates a data file

TCLOSE 23 Temporarily deactivates a data file

DEVTYPE 24 Gets device-type physical characteristics

TRKBAL 25 Effective NOP

FEOV 31 Sets forced EOV error code

WTO/WTOR 35 Communicates with the terminal

EXTRACT 40 Effective NOP

IDENTIFY 41 Adds entry to loader table

ATTACH 42 Effective LINK

CHAP 44 Effective NOP

TTIMER 46 Accesses or cancels timer

STIMER 47 Sets timer interval and timer exit routine

DEQ 48 Effective NOP

SNAP 51 Dumps specified areas of storage

ENQ 56 Effective NOP

FREEDBUF 57 Releases a free storage buffer

STAE 60 Allows processing program to decipher abend
conditions

DETACH 62 Effective NOP

CHKPT 63 Effective NOP

RDJFCB 64 Obtains information from FILEDEF command

SYNAD - Handles data set error conditions

SYNADAF 68 Provides SYNAD analysis function

SYNADRLS 68 Releases SYNADAF message and save areas

BSP 69 Backs up a record on a tape or disk

TGET/TPUT 93 Reads or writes a terminal line

TCLEARQ 94 Clears terminal input queue

Figure 22 (Part 2 of 3). Simulated OS Supervisor Calls

190 VM/SP eMS for System Programming

C=~:,:,~=_,_' '_---__ ~~~_-_-~ ____ ...:....... __ --.:.~_= ______________________ :..... ___________________ _

1I.t1ncro SVC
I'Tame NUlllbel' Function

STAX 96 Updates a queue of CMTAXEs that creates an
attention exit block

PGRLSE 112 Releases storage contents

CALL - Transfers control to a control section at a specified
entry

SAVE - Saves program registers

RETURN - Returns from a subroutine

GET/PUT - Reads/Writes system-blocked data (QSAM)

READ - Accesses system-record data

WRITE - Write system-record data

NOTE/POINT - Manages data set positioning

CHECK - Verifies READ/WRITE completion

DCB - Constructs a data control block

DCBD - Generates a DSECT for a data control block

Figure 22 (Part 3 of 3). Simulated OS Supervisor Calls

as Macros

Because CMS has its own file system and is a single-user system operating
in a virtual machine with virtual storage, there are certain restrictions for
the simulated as function in CMS. For example, HIARCHY options and
options that are used only by as multitasking systems are ignored by CMS.

Due to the design of the CMS loader, an XCTL from the explicitly loaded
phase, followed by a LINK by succeeding phases, may cause unpredictable
results.

Listed below are descriptions of all the as macro functions that are
simulated by CMS as seen by the programmer. Implementation and
program results that differ from those given in as Data Management Macro
Instructions and as Supervisor Services and Macro Instructions are stated.
HIARCHY options and those used only by as multitasking systems are
ignored by CMS. Validity checking is not performed within the simulation
routines. The entry point name in LINK, XCTL, and LOAD (SVC 6,7,8)
must be a member name or alias in a LOADLIB directory or in a TXTLIB
directory unless the COMPSWT is set to on. If the COMPSWT is on, SVC
6,7, and 8 must specify a module name. This switch is turned on and off by
using the COMPSWT macro. See the VM/SP eMS Macros and Functions
Reference for descriptions of all CMS user macros.

XDAP-SVC 0 The TYPE option must be R or W; the V, I, and K options
are not supported. The BLKREF-ADDR must point to an
item number acquired by a NOTE macro. Other options
associated with V, I, or K are not supported.

Chapter 8. Developing as Programs under CMS 191

L .. __ .. -___ ... _ ______ ._. __ . ___ .. __ . _______ .. _. __ ... __ ... __ . ____ .. ____ . ________ .. _____ .. __ . _._." _ __ . __ _ _ _._ _ ... ___ ... _ ___ .. _._ . .0._ .••• _._]

EXCP-SVC 0 The EXCP macro is supported by CMS. The EXCP macro
executes graphic channel programs for graphic access
method (GAM).

WAIT-SVC 1 All options of WAIT are supported. The WAIT routine
waits for the completion bit to be set in the specified ECBs.

POST-SVC 2 All options of POST are supported. POST sets a completion
code and a completion bit in the specified ECB.

EXIT/RETURN-SVC 3
Depending upon whether this is an exit or return from a
linked or an attached routine, SVC 3 processing does the
following: posts ECB, executes end of task routines,
releases phase storage, unchains and frees latest request
block, and restores registers. Do not use EXIT/RETURN to
exit from an explicitly LOADed phase. If EXIT/RETURN is
used for this purpose, CMS issues abend code AOA.

GETMAIN-SVC 4
All options of GETMAIN are supported except SP,
BNDRY=, HIARCHY, LC, and LU. SP, BNDRY=, and
HIARCHY are ignored by CMS. LC and LU result in
abnormal termination if used. GETMAIN gets blocks of
free storage.

FREEMAIN-SVC 5
All options of FREEMAIN are supported except SP and L.
SP is ignored by CMS, and L results in abnormal
termination if used. FREEMAIN frees blocks of storage
acquired by GETMAIN.

GETPOOL/FREEPOOL
All the options of GETPOOL and FREEPOOL are
supported. GETPOOL constructs a buffer pool and stores
the address of a buffer pool control block in the DCB.
FREEPOOL frees a buffer pool constructed by GETPOOL.

LINK-SVC 6 The DCB and HIARCHY options are ignored by CMS. All
other options of LINK are supported. LINK loads the
specified program into storage (if necessary) and passes
control to the specified entry point.

XCTL-SVC 7 The DCB and HIARCHY options are ignored by CMS. All
other options of XCTL are supported. XCTL loads the
specified program into storage (if necessary) and passes
control to the specified entry point.

LOAD-SVC 8 The DCB and HIARCHY options are ignored by CMS. All
other options of LOAD are supported. LOAD loads the
specified program into storage (if necessary) and returns
the address of the specified entry point in register O. If

192 VM/SP eMS for System Programming

DELETE-SVC 9

loading a subroutine is required when SVC 8 is issued, CMS
searches directories for a TXTLIB member containing the
entry point or for a TEXT file with a matching filename.
An entry name in an unloaded TEXT file will not be found
unless the filename matches the entry name. After the
subroutine is loaded, CMS tries to resolve external
references within the subroutine, and may return another
entry point address. To insure a correct address in register
0, the user should bring such subroutines into storage
either by the CMS LOAD/INCLUDE commands or by a
VCON in the user program.

All the options of DELETE are supported. DELETE
decreases the use count by one and, if the result is zero,
frees the corresponding virtual storage. Code 4 is returned
in register 15 if the phase is not found.

GETMAIN/FREEMAIN-SVC 10
All the options of GETMAIN and FREEMAIN are
supported except SP and HIARCHY, which are ignored by
CMS.

TIME-SVC 11 CMS supports only the DEC, BIN, TU, and MIC parameters
of the TIME macro instruction. TIME returns the time of
day to the calling program. However, the time value that
CMS returns is only accurate to the nearest second and is
converted to the proper unit.

ABEND-SVC 13
The completion code parameter is supported. The DUMP
parameter is not. If a STAE request is outstanding, control
is given to the proper STAE routine. If a STAE routine is
not outstanding, a message indicating that an abend has
occurred is printed on the terminal along with the
completion code.

SPIE-SVC 14 All the options of SPIE are supported. The SPIE routine
specifies interruption exit routines and program
interruption types that cause the exit routine to receive
control.

RESTORE-SVC 17
The RESTORE routine in CMS is a NOP. It returns
control to the user.

BLDL-SVC 18 BLDL is an effective NOP for LINKLIBs and JOBLIBs. For
TXTLIBs and MACLIBs, item numbers are filled in the TTR
field of the BLDL list. The K, Z, and user data fields, as
described in DS/VS Data Management Macro Instructions,
are set to zeroes. The "alias" bit of the C field is supported,
and the remaining bits in the C field are set to zero.

Chapter 8. Developing OS Programs under CMS 193

FIND-SVC 18 All the options of FIND are supported. FIND sets the
read/write pointer to the item number of the specified
member.

STOW-SVC 21 All the options of STOW are supported. The "alias" bit is
supported, but the user data field is not stored in the
MACLIB directory since CMS MACLIBs do not contain
user data fields.

When using the STOW macro's ADD directory function
without closing and reopening the data set after each new
member is added, the CLOSE macro must be issued within
each multiple of 256 new members. The existing number of
entries does not need to be known before the ADD function
is started.

OPEN/OPENJ-SVC 19/22
All the options of OPEN and OPENJ are supported except
for the DISP, EXTEND, and RDBACK options, which are
ignored. OPEN creates a CMSCB (if necessary), completes
the DCB, and merges necessary fields of the DCB and
CMSCB.

CLOSE/TCLOSE(CLOSE TYPE = T)-SVC 20/23
All the options of CLOSE and TCLOSE are supported
except for the DISP option, which is ignored. The DCB is
restored to its condition before OPEN. If the device type is
disk, the file is closed. If the device type is tape, the
REREAD option is treated as a REWIND. For TCLOSE,
the REREAD option is REWIND, followed by a forward
space file for tapes with standard labels.

DEVTYPE-SVC 24
With the exception of the RPS option, which CMS ignores,
CMS accepts all options of the DEVTYPE macro
instruction. In supporting this macro instruction, CMS
groups all devices of a particular type into the same class.
For example, all printers are grouped into the printer class,
all tape drives into the tape drive class, and so forth. In
response to the DEVTYPE macro instruction, CMS
provides the same device characteristics for all devices in a
particular class. Thus, all devices in a particular class
appear to be the same device type.

The device type characteristics CMS returns for each class
are:

194 VM/SP eMS for System Programming

Class

Printer
Virtual reader
Console

Device Characteristics

1403
2540
1052

[G GY\J 0 ~ (u ~~) u u-u ~J ([) ~~ ~J U'QJ U [j"tJ ljU"J rJ
[_~ .. _~ ____ ~: ___ ::" __ ~~ __ . __ ~~ ___ .~.~_~::..,~:-:,====~_,::=_~==:,,:~~~~~~,:,, __ =-_,:,,~_. _'" _.~~-___ " '_-=~~-~-=~':'~~-==~.~~-':_' __ J

Tape drive
DASD
Virtual punch
DUMMY
unassigned

TRKBAL-SVC 25

2400 (9 track)
2314
2540
2314
2314

The TRKBAL routine in CMS is a NOP. It returns control
to the user.

FEOV-SVC 31 Control is returned to CMS with an error code of 4 in
register 15.

WTO/WTOR-SVC 35
All options of WTO and WTOR are supported except those
options concerned with multiple console support. WTO
displays a message at the operator's console. WTOR
displays a message at the operator's console, waits for a
reply, moves the reply to the specified area, sets a
completion bit in the specified ECB, and returns. There is
no check made to determine if the operator provides a reply
that is too long. The reply length parameter of the WTOR
macro instruction specifies the maximum length of the
reply. The WTOR macro instruction reads only this
amount of data.

EXTRACT-SVC 40
The EXTRACT routine in CMS is essentially a NOP. The
user-provided answer area is set to zeroes and control is
returned to the user with a return code of 4 in register 15.

IDENTIFY-SVC 41
The IDENTIFY routine in CMS adds a REQUEST block to
the load request chain for the requested name and address.

ATTACH-SVC 42
All the options of ATTACH are supported in CMS as in OS
PCP. The following options are ignored by CMS: DCB,
LPMOD, DPMOD, HIARCHY, GSPV, GSPL, SHSPV,
SHSPL, SZERO, PURGE, ASYNCH, and TASKLIB.
ATTACH passes control to the routine specified, fills in an
ECB completion bit if an ECB is specified, passes control to
an exit routine if one is specified, and returns control to the
instruction following the ATTACH.

Since CMS is not a multitasking system, a phase requested
by the ATTACH macro must return to CMS.

CHAP-SVC 44 The CHAP routine in eMS is a NOP. It returns control to
the user.

Chapter 8. Developing OS Programs under CMS 195

EJ)Gt'1G~(})~]DUilQl 08 L]~'(i)G~U1@fJuuS
r-------

TTIMER-SVC 46
All the options of TTIMER are supported.

STIMER-SVC 47
All options of STIMER are supported except for TASK and
WAIT. The TASK option is treated as if the REAL option
had been specified, and the WAIT option is treated as a
Nap; it returns control to the user. The maximum time
interval allowed is X'7FFFFFOO' timer units (or 15 hours, 32
minutes, and 4 seconds in decimal). If the time interval is
greater than the maximum, it is set to the maximum.

If an STIMER is issued and later the virtual machine is put
into a wait state, the virtual timer is not updated unless
prior to this the CP command SET TIMER REAL was
issued or the REALTIMER option was specified in the
VM/SP directory entry of the virtual machine.

Note: If running in the CMSBATCH environment, issuing
the STIMER or TTIMER macro affects the CMSBATCH
time limit. Depending on the frequency, number, and
duration of STIMERs and/or TTIMERs issued, the
CMSBATCH limit may never expire.

DEQ-SVC 48 The DEQ routine in CMS is a Nap. It returns control to
the user.

SNAP-SVC 51 Except for SDATA, PDATA, and DCB, all options of the
SNAP macro are processed normally. SDATA and PDATA
are ignored. Processing for the DCB option is as follows.
The DBC address specified with SNAP is used to verify that
the file associated with the DCB is open. If it is not open,
control is returned to the caller with a return code of 4. If
the file is open, then storage is dumped (unless the FCB
indicates a DUMMY device type). SNAP always dumps
output to the printer. The dump contains the PSW, the
registers, and the storage specified.

ENQ-SVC 56 The ENQ routine in CMS is a Nap. It returns control to
the user.

FREEDBUF-SVC 57
All the options of FREEDBUF are supported. FREEDBUF
returns a buffer to the buffer pool assigned to the specified
DCB.

STAE-SVC 60 All the options of ST AE are supported except for the XCTL
option, which is set to XCTL=YES; the PURGE option,
which is set to HALT; and the ASYNCH option, which is
set to NO. STAE creates, overlays, or cancels a STAE
control block as requested. STAE retry is not supported.

196 VM/SP eMS for System Programming

"
" .; ~J "]

DETACH-SVC 62

CHKPT-SVC 63

The DETACH routine in CMS is a Nap. It returns control
to the user.

The CHKPT routine is a Nap. It returns control to the
user.

RDJFCB-SVC 64
All the options of RDJFCB are supported. RDJFCB causes
a job file control block (JFCB) to be read from a CMS
control block (CMSCB) into real storage for each data
control block specified. FILEDEF commands create
CMSCBs.

Additional information regarding CMS 'as Simulation' of
RDJFCB follows:

o The DCBs specified in the RDJFCB PARAMETER LIST
are processed sequentially as they appear in the
parameter list.

o On return to the caller, a return code of zero is always
placed in register 15. If an abend occurs, control is not
returned to the caller.

o Abend 240 occurs if zero is specified as the address of
the area into which the JFCB is to be placed.

o Abend 240 occurs if a JFCB EXIT LIST ENTRY (Entry
type X'07') is not present in the DCB EXIT LIST for any
one of the DCBs specified in the RDJFCB
PARAMETER LIST.

o If a DCB is encountered in the parameter list with zero
specified as the DCB EXIT LIST ('EXLST') address, the
RDJFCB immediately returns with return code zero in
register 15. Except for this situation, all of the DCBs
specified in the RDJFCB PARAMETER LIST are
processed, unless an abend occurs.

o For a DCB that is not open, a search is done for the
corresponding FILEDEF or DLBL. If one is not found,
a test is done to determine if a file exists with a
filename of 'FILE', a filetype of the DDNAME from
DCB, and a filemode of 'AI'. If such a file does exist,
then X' 40' is placed in the JFCB at displacement X'57'
(FLAG' JFCOLD IN FIELD' JFCBIND2'). If such a file
does not exist then X'CO' (FLAG 'JFCNEW') will be in
field 'JFCBIND2'.

o For a file that is not open, but for which a DLBL has
been specified, X'OB' is placed in the JFCB at

Chapter 8. Developing as Programs under CMS. 197

L _._._ ____ . ____ • -----.-(J'.----.. ---.---.. -------.. ------------------.--___ J

displacement X'63' (field 'JFCDSORG' byte 2) to
indicate that it is a VSAM file.

SYNADAF-SVC 68
All the options of SYNADAF are supported. SYNADAF
analyzes an I/O error and creates an error message in a
work buffer.

SYNADRLS-SVC 68

BSP-SVC 69

All the options of SYNADRLS are supported. SYNADRLS
frees the work area acquired by SYNAD and deletes the
work area from the save area chain.

All the options of BSP are supported. BSP decrements the
item pointer by one block.

TGET/TPUT-SVC 93
TGET and TPUT operate as if EDIT and WAIT were coded.
TGET reads a terminal line. TPUT writes a terminal line.

TCLEARQ-SVC 94
TCLEARQ in CMS clears the input terminal queue and
returns control to the user.

STAX-SVC 96 The only option of STAX that is supported is EXIT
ADDRESS. STAX updates a queue of CMTAXEs each of
which defines an attention exit level.

PGRLSE-SVC 112

CALL

NOTE

POINT

CHECK

DCB

Release all complete pages (4K bytes) associated with the
area of storage specified.

The CALL macro is supported by CMS. The CALL macro
transfers control to a control section at a specified entry.

All the options of NOTE are supported. NOTE returns the
item number of the last block read or written.

All the options of POINT are supported. POINT causes the
control program to start processing the next read or write
operation at the specified item number. The TTR field in
the block address is used as an item number.

All the options of CHECK are supported. CHECK tests the
I/O operation for errors and exceptional conditions.

The following fields of a DCB may be specified relative to
the particular access method indicated:

198 VM/SP eMS for System Programming

/

lDG\JG~Of)~uuU 08 ~Ju·OOU·8Ul{~S
r- _ .. -. ----.- --.. _._-- ----"-"._-"-----.....:~~=-====.:....-==:-----.-]

Operand BDAM BPAM BSAM QSAM

BFALN F,D F,D F,D F,D
BLKSIZE n(number) n n n
BUFCB a(address) a a a
BUFL n n n n
BUFNO n n n n
DDNAME s(symbol) s s s
DSORG DA PO PS PS
EODAD a a a
EXLST a a a a
KEYLEN5 n n
LIMCT n
LRECL n n n
MACRF R,W R,W R,W,P G,P,L,M
OPTCD A,E,F,R J J
RECFM F,V,U F,V,U, F,V,B,S,A,M,U F,V,B,U,A,M,S
SYNAD a a a a
NCP n n

Access Method Support

An access method governs the manipulation of data. To facilitate the
execution of as code under CMS, the processing program must see data as
as would present it. For instance, when the processors expect an access
method to acquire input source cards sequentially, CMS invokes specially
written routines that simulate the as sequential access method and pass
data to the processors in the format that the as access methods would have
produced. Therefore, data appears in storage as if it had been manipulated
using an as access method. For example, block descriptor words (BDW),
buffer pool management, and variable records are updated in storage as if
an as access method had processed the data. The actual writing to and
reading from the I/O device is handled by CMS file management. Note that
the character string X'61FFFF61' is interpreted by CMS as an end of file
indicator.

The essential work of the volume table of contents (VTOC) and the data set
control block (DSCB) is done in CMS by a master file directory (MFD) and
a file status table (FST). A MFD updates the disk contents, and a FST
describes each data file. All disks are formatted in physical blocks of 512,
800, 1024, 2048, or 4096 bytes.

CMS continues to update the as format, within its own format, on the
auxiliary device for files whose filemode number is 4. That is, the block
and record descriptor words (BDW and RDW) are written along with the
data. If a data set consists of blocked records, the data is written to and
read from the I/O device in physical blocks rather than logical records.
CMS also simulates the specific methods of manipulating data sets.

5 If an input data set is not a BDAM data set, zero is the only value that should
be specified for KEYLEN. This applies to the user exit lines as well as to the
DCB macro instruction.

Chapter 8. Developing OS Programs under CMS 199

,

Ej\Q t7C' ~ Q'lr<j 0 Cu f)\l 08 [J [j~G ~.}l 0"0 [JlrQO
~ ~ ,.J

[=:'=::-.-.~::'.~=." :_ .. _._._ __ ... __ ~ .. _._. __ .. _____ .. _ .. _ ___ _ ___ ._ .. _____ .. ________ . ________________ ._. _______ ._._. __ .. ____ . ____ . __ . ___ ._ .. __ . ___ .. __ ~:::-__ . __ J

When the OPEN macro' instruction is executed, the eMS simulation of the
OS OPEN routine initializes the data control block (DeB). The DeB fields
are filled in with information from the DeB macro instruction, the
information specified on the FILEDEF command, or, if the data set already
exists, the data set label. However, if more than one source specifies
information for a particular field, only one source is used.

The DeB fields are filled in this order:

1. The DeB macro instruction in your program.

2. The fields you had specified on the FILEDEF command.

3. The data set label if the data set already exists.

The DeB macro instruction takes precedence over the FILEDEF and the
data set label. This FILEDEF takes precedence over the data set label.
Data set label information from an existing eMS file is used only when the
OPEN is for input or update, otherwise, the OPEN routine erases the
existing file.

You can modify any DeB field either before the data set is opened or
through a data control block open exit. eMS supports only the data
control block exit of the EXIT LIST (EXLST) options. When the data set is
closed, the DeB is restored to its original condition. Fields that were
merged in at OPEN time from the FILEDEF and the data set label are
cleared.

To accomplish this simulation, eMS supports certain essential macros for
the following access methods:

o BDAM

o BPAM

(direct) -- identifying a record by a key or by its relative
position within the data set.

(partitioned) -- seeking a named member within data set.
Note: Two BPAM files with the same filetype cannot be
updated at the same time.

o BSAM/QSAM (sequential) -- accessing a record in a sequence in relation
to preceding or following records.

o VSAM (direct or sequential) -- accessing a record sequentially or
directly by key or address.

Note: eMS support of OS VSAM files is based on
VSE/VSAM. Therefore, the OS user is restricted to those
functions available under VSE/VSAM. See the section
"eMS Support for OS and VSE/VSAM Functions" for
details.

eMS also updates those portions of the OS control blocks needed by the OS
simulation routines to support a program during execution. Most of the

200 VM/SP eMS for System Programming

simulated supervisory OS control blocks are contained in the following two
CMS control blocks:

CMSCVT
simulates the communication vector table. Location 16 contains the
address of the CVT control section.

CMSCB
is allocated from system free storage whenever a FILEDEF command
or an OPEN (SVC 19) is issued for a data set. The CMS control block
consists of a file control block (FCB) for the data file, partial
simulation of the job file control block (JFCB), input/output block
(lOB), and data extent block (DEB).

The data control block (DCB) and the data event control block (DECB) are
used by the access method simulation routines of CMS.

Note: The results ~ay be unpredictable if two DCBs access the same data
set at the same time.

The GET and PUT macros are not supported for use with spanned records
except in GET locate mode. READ, WRITE, and GET (in locate mode) are
supported for spanned records, provided the filemode number is 4 and the
data set is in physical sequential format.

GET (QSAM)
All the QSAM options of GET are supported. Substitute mode is
handled the same as move mode. If the DCBRECFM is FB, the
filemode number is 4, and the last block is a short block, an EOF
indicator (X'61FFFF61') must be present in the last block after the last
record. Issue an explicit CLOSE prior to returning to CMS to obtain
the last record when LOCATE mode is used with PUT.

GET (QISAM)
QISAM is not supported in CMS.

PUT (QSAM)
All the QSAM options of PUT are supported. Substitute mode is
handled the same as move mode. If the DCBRECFM is FB, the
filemode number is 4, and the last block is a short block. An EOF
indicator is written in the last block after the last record. When
LOCATE mode is used with PUT, issue an explicit CLOSE prior to
returning to CMS to obtain the last record.

PUT (QISAM)
QISAM is not supported in CMS.

PUTX
PUTX support is provided only for data sets opened for
QSAM-UPDATE with simple buffering.

Chapter 8. Developing as Programs under CMS 201

BDAM Restrictions

READ/WRITE (BISAM)
BISAM is not supported in CMS.

READ/WRITE (BSAM and BPAM)
All the BSAM and BPAM options of READ and WRITE are supported
except for the SB option (read backwards).

READ (Offset Read of Keyed BDAM data set)
This type of READ is not supported because it is used only for
spanned records.

READ/WRITE (BDAM)
All the BDAM and BSAM (create) options of READ and WRITE are
supported except for the Rand RU options.

When an input or output error occurs, do not depend on OS' sense bytes.
An error code is supplied by CMS in the ECB in place of the sense bytes.
These error codes differ for various types of devices and their meaning can
be found in VM/ SP System Messages and Codes, under DMS message 120S.

The four methods of accessing BDAM records are:

1. Relative Block RRR

2. Relative Track TTR

3. Relative Track and Key TTK

4. Actual Address MBBCCHHR

The restrictions on these access methods are as follows:

• Only the BDAM identifiers underlined above can be used to refer to
records since the CMS simulation of BDAM files uses a three-byte
record identifier on 512, 1K, 2K, and 4K format CMS minidisks. For
BOO-byte disks, only the last two identifiers are used.

o CMS BDAM files are always created with 255 records on the first
logical track and 256 records on all other logical tracks, regardless of
the block size. If BDAM methods 2, 3, or 4 are used and the RECFM is
U or V, the BDAM user must either write 255 records on the first track
and 256 records on every track thereafter, or the BDAM user must not
update the track indicator until a NO SPACE FOUND message is
returned on a write. For method 3 (WRITE ADD), this message occurs
when no more dummy records can be found on a WRITE request. For
methods 2 and 4, this does not occur and the track indicator is updated
only when the record indicator reaches 256 and overflows into the track
indicator.

202 VM/SP eMS for System Programming

[De\7G~@~t)~Ui)~ OS ~~u·O[J[tE.lu·uuD
r---_--00------0------_0 -0-0---0----------------- ----._-------O---J

o The user must create variable length BDAM files (in PL/I they are
regional 3 files) entirely under CMS. Also specify, on the XTENT
option of the FILEDEF command, the exact number of records to be
written. When reading variable length BDAM files, the XTENT and
KEYLEN information specified for the file must duplicate the
information specified when the file was created. CMS does not support
WRITE ADD of variable length BDAM files; that is, the user cannot
add additional records to the end of an already existing variable length
BDAM file.

o Two files of the same filetype, both using keys, cannot be open at the
same time. If a program that is updating keys does not close the file it
is updating for some reason, such as a system failure or another IPL
operation, the original keys for files that are not fixed format are saved
in a temporary file with the same filetype and a filename of
$KEYSA VE. To finish the update, run the program again.

o Variable length BDAM files must be created under CMS in their
entirety, with the XTENT option of FILEDEF specifying the exact
number of records to be written. When reading variable BDAM files,
the XTENT and key length information specified must duplicate what
was created at file creation time. CMS does not support adding
variable length records to BDAM files.

o Once a file is created using keys, additions to the file must not be made
without using keys and specifying the original length.

o Note that there is limited support from the CMS file system for BDAM
created files (sparse). Sparse files are manipulated with CMS
commands but are not treated as sparse files by most CMS commands.
The number of records in the FST is treated as a valid record number.

o The number of records in the data set extent must be specified using the
FILEDEF command. The default size is 50 records.

o The minimum LRECL for a CMS BDAM file with keys is eight bytes.

Reading OS Data Sets Using OS Macros

CMS users can read OS sequential and partitioned data sets that reside on
OS disks. The CMS MOVEFILE command can be used to manipulate those
data sets, and the OS QSAM, BPAM, and BSAM macros can be executed
under CMS to read them.

The following OS Release 20.0 BSAM, BP AM, and QSAM macros can be
used with CMS to read OS data sets and DOS files:

BLDL
BSP

ENQ
FIND

RDJFCB
READ

Chapter 8. Developing OS Programs under eMS 203

r, "r '('.- I"l['"("," "'(, ''I
l. I ~, j (.l, l. l.,

CHECK GET
CLOSE NOTE
DEQ POINT
DEVTYPE POST

SYNADAF
SYNADRLS
WAIT

, ;

CMS supports the following disk formats for the OS and OS/VS sequential
and partitioned access methods:

o Spli t cylinders
o User labels
o Track overflow
o Alternate tracks.

As in OS, the CMS support of the BSP macro produces a return code of 4
when trying to backspace over a tape mark or when a beginning of an
extent is found on an OS data set. If the data set contains split cylinders,
an attempt to backspace within an extent resulting in a cylinder switch also
produces a return code of 4. When a data set has been allocated or updated
by OS on an OS disk, an OS CLOSE must be issued before CMS can read or
move it. The CLOSE marks theend-of-file (EOF) and updates the
DSILSTAR field of the Format 1 DSCB. If the CLOSE is not issued, CMS
may read or move residual data that remains beyond the intended end of
the file.

OS Tape Volume Switching

DMSTVS is a CMS routine that performs tape volume switching operations
for OS multivolume tape support. All tape volume switch requests are
processed by this routine.

The DMSTVS function can be overridden by a nucleus extension with the
name DMSTVS. The nucleus extension must follow the same entry and exit
conventions asDMSTVS.

DMSTVS uses the TVSP ARMS macro to set various values used by
DMSTVS. These values include:

o The userid of the virtual machine that all CMS tape volume switching
messages are sent.

o The time interval DMSTVS waits between issuing sense commands to
determine, the tapedrive's ready /notready status.

o The number of sense operations processed before issuing an additional
tape volume switching prompt message.

o The number, of prompt messages issued before message DMSTVS2701 is
issued.

o The number of prompt messages issued before message DMSTVS2711 is
issued.

204 VM/SP' eMS for SysternProgramming

o The decision to check for a write ring when NORING is requested.

Please note that DMSTVS sets the CP timer to real (CP SET TIMER
REAL) and uses the OS STIMER simulation. This paces the prompting
messages.

Chapter 8. Developing as Programs under CMS 205

l ______________ .. _________ _

206 VM/SP eMS for System Progranuning

, .. _ ... __ .. ---_._----- _.---

I

You can use CMS to create, compile, test, execute,. and debug VSE
programs written in the Assembler, DOS/VS COBOL, DOS PL/I, DOS/VS
RPG-II programming languages. eMS simulates many functions of the Disk
Operating System VSE so you can use the interactive facilities of VM/SP to
development and execute your VSE programs in a VSE virtual machine or
in a batch facility virtual machine.

This chapter discusses the following topics:

o Entering the CMS/DOS environment
o Using DOS files on DOS disks
o Using the ASSGN command
o Using the DLBL command
o Using DOS libraries in eMS/DOS
o U sing macro libraries
o VSE assembler language macros supported
o Assembling source programs
o Link-editing and executing programs in eMS/DOS
o VSE supervisor and I/O macros supported by eMS/DOS
o VSE supervisor control blocks simulated by CMS/DOS
o eMS/DOS user 9onsiderations and responsibilities

eMS/DOS is neither eMS nor is it DOS. It is a composite, and its
vocabulary contains both eMS and VSE terms. eMS/DOS performs many
of the same functions as DOS. However, under VSE a function is initiated
by a control card, while under eMS it is initiated ·by a command. Many
eMS/DOS commands, therefore, have the same names as the VSE control
statement that performs the same function. In those cases where the
control statement you would use in VSE and the command you use in eMS
are different, the differences are explained. For the most part, whenever a
term that is familiar to you as a VSE term is used, it has the same meaning
to eMS/DOS, unless otherwise indicated.

eMS/DOS support in VM/SP is based on the VSE Program Product. The
term DOS, however, continues to be used in a general sense, and in the
discussion that follows, DOS refers to the VSE Program Product.

Note: VM/SP supports Version 1 Releases 2 and 3 of VSE/AF.

Chapter 9. Developing VSE Programs under CMS 207

Entering the eMS/DOS Environment

After you have loaded CMS into your virtual machine, you can enter the
CMS/DOS environment by issuing:

set dos on

If you want to access a DOS system residence volume during your
CMS/DOS terminal session, you should link to and access the disk that
contains the DOS SYSRES before you issue the SET command. For
example, if you share the system residence volume with other users and it is
in your directory at virtual address 390, you would issue the command:

access 390 g

then issue the SET command as follows:

set dos on g

to indicate that the SYSRES is located on your G-disk. If you are going to
use the CMS/DOS librarian facilities to access any of the libraries on the
system residence volume, you must enter the CMS/DOS environment this
way.

If you are using CMS exclusively for DOS applications, you could put the
ACCESS and SET DOS ON commands in your PROFILE EXEC.

All of the CP and CMS on-line debugging and testing facilities (such as the
CP PER and STORE commands) are supported in the CMS/DOS
environment. Also, CP disk error recOJ;ding and recovery are supported in
eMS/DOS.

CMS/DOS can execute programs that use the sequential access method
(SAM) and virtual storage access method (VSAM), and CMS/DOS can
access VSE libraries. If you are going to use access method services
functions in CMS/DOS or execute functions that read or write VSAM data
sets, you must use the VSAM option of the SET DOS ON command:

set dos on g (vsam

When you are using CMS/DOS, you can use your virtual machine just as
you would if you were in the CMS environment. In the CMS/DOS
environment, CMS supports many VSE facilities, but does not support OS
simulation. For example, the SCRIPT command uses OS macros and is
therefore invalid in the CMS/DOS environment. When you no longer need
VSE support under CMS, you issue the SET DOS OFF command and VSE
facilities are no longer available.

You have, however, in addition to the CP and CMS commands available, a
number of CMS/DOS commands and CMS commands with special
CMS/DOS operands that simulate VSE functions. Except for the DLBL and
DOSLIB commands, these commands or operands should only be issued in
the CMS/DOS environment.

208 VM/SP eMS for System Programming

r-

Command Operand

ASSGN

DLBL

DOSLIB

DOSLKED

DOSPLI

DSERV

ESERV

FCOBOL

FETCH

GENMOD OS
DOS
ALL

GLOBAL DOSLIB

LISTIO

LOADMOD

OPTION

PSERV

- -- - ---- --::":'=':'J

The CMS/DOS commands and CMS commands with special CMS/DOS
operands are summarized in Figure 23 on page 209. A detailed description
of the commands and the command format are found in the VM/SP CMS
Command Reference.

Comments

Executable only in the CMS/DOS environment.
Assigns CMS/DOS system or programmer logical units
to a virtual device.

Defines a VSE or VSAM ddname and relates the
ddname to a disk file.

Deletes, compacts, or lists information about the
phases in a CMS/DOS phase library.

Executable only in the CMS/DOS environment.
Link-edits CMS text file or object modules from a VSE
relocatable library, and places them in executable
forms in a CIVIS/DOS phase library.

Executable only in the CMS/DOS environment.
Compiles DOS PL/I source programs.

Executable only in the CMS/DOS environrpent.
Displays information about VSE core image,
relocatable, source statement, and procedure and/or
transient directories.

Executable only in the CMS/DOS environment.
Displays, updates, punches, or prints edited (E
sub library) VSE source statement books.

Executable only in the CMS/DOS environment.
Compiles DOS/VS COBOL source programs.

Executable only in the CMS/DOS environment.
Fetches a CMS/DOS executable phase.

Specifies the type of macro support needed to execute a
module. The ALL operand is intended for CMS
internal use.

The GLOBAL command can specify CMS/DOS phase
libraries, as well as text and macro libraries.

Executable only in the CMS/DOS environment.
Display information about the CMS/DOS system and
programmer logical units.

Checks that a module generated to execute in a
specific macro simulation environment (CMS/DOS or
CMS) is in the correct environment.

Executable only in the CMS/DOS environment. Sets
compiler options for DOS/VS COBOL.

Executable only in the CMS/DOS environment. Copies
and displays procedures in the VSE procedure libraries
and/or spools the procedures to the CMS virtual
printer and/or punch.

Figure 23 (Part 1 of 2). CMS/DOS Commands and CMS Commands with Special Operands

Chapter 9. Developing VSE Programs under eMS 209

. ___________ .. _ _ ... _. __ ._._h ________ . ___ ._ .. ___ ._. ___ ._. __ :J

Command Operand Comments

QUERY UPSI Executable only in the CMS/DOS environment.
Displays current setting of eMS/DOS UPSI byte.

OPTION Displays the current data set definitions.
DLBL Executable only in the CMS/DOS environment.

Displays CMS/DOS compiler options.
DOSLNCNT Displays the current number of SYSLST lines per page.
DOS Displays the current status (active or not active) of
DOSLIB CMS/DOS.

Displays the names of all CMS/DOS phase libraries
DOSPART currently being searched for executable phases.
LIBRARY Displays the virtual partition size.

Displays the names of all CMS/DOS phase libraries to
be searched, in addition to the text and macro
libraries.

RSERV Executable only in the eMS/DOS environment. Copies
and/or displays modules in a VSE relocatable library.
Output can also be directed to the virtual printer or
punch.

SET DOS Makes the CMS/DOS environment active or not active.
DOSLNCNT Specifies the number of SYSLST lines per page.
nn Sets the virtual partition size.
DOSPART Executable only in the CMS/DOS environment. Sets
UPSI the CMS/DOS UPSI byte.

SSERV Executable only in the CMS/DOS environment. Copies
or displays books from the VSE source statement
library. Output can also be directed to the virtual
printer or punch.

Figure 23 (Part 2 of 2). CMS/DOS Commands and CMS Commands with Special Operands

DLII in the eMS/DOS Environment

Batch DL/I programs can be written and tested in the eMS/DOS
environment. This includes programs written in assembler, COBOL, and
PL/I languages. Not all functions of COBOL and PL/I are supported. For a
description of what is supported, see the documentation on the appropriate
licensed program.

Data base description generation and program specification block
generation can also be executed. However, the application control block
generation must be submitted to a DOS virtual machine for execution. The
data base recovery and reorganization utilities must also be executed in a
DOS virtual machine. This support provides the ability to:

• Interactively code DL/I control blocks and application programs that
contain imbedded DL/I calls.

• Store and maintain macros used to generate DL/I control blocks in a
CMS library. Store and maintain programs created under eMS in a
eMS library. Production libraries are thus isolated from the test
environment.

210 VM/SP eMS for System Programming

[GGr\:J(:;~(0~J~uJtJ V~3[~ ~')u'([)O[j'c]u u'"~S
____ -_"-_" ~_-_"" _-~:":'::""'::':-=-:.:..=J

o Modify and compile programs using the CMS/DOS text manipulation
and EXEC facilities. "

o Link-edit and execute batch DL/I programs either interactively or in
CMSBATCH. Online DL/I application programs requiring access to
CICS/VS must be submitted to a DOS virtual machine for link-editing,
cataloging, and execution.

The following restrictions apply:

o All the existing guidelines and restrictions that apply to VSAM data set
creation, maintenance, and application program use apply to DL/I data
sets.

o The CMS/DOS restriction on writing to sequential files applies to
SHSAM and HSAM.

o To assemble a DBD or PSB under CMS/DOS, you must first copy the
DBDGEN and PSBGEN macros from the DOS source statement library
to a CMS MACLIB.

For more information about using DL/I in the CMS/DOS environment, see
DL/I DOS/VS Data Base Administration.

Using DOS files on DOS Disks

You can have DOS disks attached to your virtual machine by a directory
entry or you can link to a DOS disk with the LINK command. You can use
the ACCESS command to assign a mode letter to the disk:

access 155 b

and the RELEASE command to release it:

release b

Except for VSAM disks, you cannot write on DOS disks or update DOS files
on them. You can, however, execute programs and CMS/DOS commands
that read from these files, and you can use the LISTDS command to display
the fileids of files on a DOS disk.

For example, if you enter:

listds b

You receive the following response, if the data set exists:

FM DATA SET NAME
B NEW.TEST DATA
B ONE.TEST ONE
B TWO.TEST TWO

Chapter 9. Developing VSE Programs under CMS 211

L ___ ... __ ._ .. _. __ ... _.,._ _______ . ________________ . _____________ . ___ . ____ __ ._~~===._ .. _ .. ___ .. __ . ____ . ____ ___ --========~._:_:=:=-:::::=_:J

Reading DOS Files

You can also verify the existence of a particular file. For example, if the
file-id is NEW.TEST.DATA you can enter:

listds new.test.data.h
-- or --

listds new test data b

If the file-id of the DOS file you want to verify contains embedded blanks,
for example NEW.TEST DATA, then you have to enter the LISTDS
commands with a question mark:

listds ? b

eMS responds:

Enter data set name:

and you can enter the exact file-id:

new. test data

If the data set exists, you receive a response:

FM DATA SET NAME
B . NEW.TEST DATA

Under CMS/DOS, you can execute programs that read DOS sequential
(SAM) files; you can also execute programs that read and write VSAM files.
You cannot, however, execute programs to read direct (DAM) or indexed
sequential (ISAM) DOS files. Complete information on using CMS to
access and manipulate VSAM files is described in "Chapter 10. Using
Access Method Services and VSAM under CMS and CMS/DOS" on
page 273.

The discussion below lists the restrictions placed on reading SAM files.

eMS cannot read DOS files that:

• Have the input security indicator on.

e Contain more than 16 user labels and/or data extents. (If the file has
user labels, they occupy the first extent. Therefore, the file must
contain no more than 15 data extents.) User labels in user-labeled files
are ignored.

• Are multivolume files. Multivolume files are read as single-volume
files. End of volume is treated as end of file. There is no end-of-volume
switching.

CMS does not support duplicate volume labels. You cannot access more
than one volume with the same six-character label while you are using
CMS/DOS.

212, VM/SP eMS for System Programming

c.:::=======---:-----.-----------.---------.--- .. ------.-------- -.-----... -----.----.------ ---------"]

Creating CMS Files from DOS Libraries

You can create CMS files from existing DOS files on DOS disks. CMS
simulates the DOS librarian functions DSERV, RSERV, SSERV, ESERV,
and PSERV with commands of the same names. You can use these
CMS/DOS commands to create CMS files from relocatable source statement
or procedure libraries located either on the DOS system residence volume
or in private libraries. The functions are fully described later in this
section.

Copying DOS Flies and Tape Data Flies

If you want to create CMS files from DOS files that are not cataloged in
libraries or from DOS files on tape, you can use the MOVEFILE command.
The MOVEFILE command allows you to copy a file from one device to
another device of the same or a different type. Before issuing the
MOVEFILE command, the input and the output files must be described to
CMS with the FILEDEF command.

The MOVEFILE and FILEDEF commands are described in "Chapter 8.
Developing OS Programs under CMS" on page 157. The procedures are the
same for copying DOS files as for OS data sets. You must, however, keep
the following in mind:

o Because DOS files on DOS disks do not contain BLKSIZE, RECFM, or
LRECL options, these options must be specified via the FILEDEF
command. Otherwise, default values are assigned. The default values
are BLOCKSIZE=32760 and RECFM=U. LRECL is not used for
RECFM = U files.

o If a DOS file-id does not follow OS naming conventions, you must use
the DSN ? operand of FILEDEF and the? operand of LISTDS to enter
the DOS file-id. The OS naming conventions are: one-byte to eight-byte
qualifiers, each qualifier must be separated by a period, and up to 44
characters including periods.

Copying Modules from VSE Library or SVSIN Tapes

You can create individual CMS files for VSE modules from a VSE library
distribution tape or VSE SYSIN tape. Use the VMFDOS command. The
VMFDOS command can create a CMS file for each VSE module that exists,
and the CMS filename corresponds to the VSE module name. You can
restore individual modules, groups of modules, or the entire module set.

For VSE library distribution tapes, the VMFDOS command restores
modules from either system or private (relocatable and/or source statement)
libraries. The created CMS files have a filetype of "TEXT" if they are from
a relocatable library. They have a filetype of "MACRO" if they are from a
source statement library.

For VSE SYSIN tapes, modules containing a period as the second character
(for example, "A.") of a VSE "CATALx" control statement have a filetype of
"MACRO." All other files have a filetype of "TEXT".

Chapter 9. Developing VSE Programs under CMS 213

The VMFDOS command is described in the VM/ SP Installation Guide.

Reading in Real Card Decks

Using Tapes In CMS/DOS

If you have DOS files or source programs on cards, you can create CMS
files directly by having these cards read into the real system card reader.
You direct the cards to your virtual machine by punching a CP ID card.
For example, if your userid is HARMONY, then enter:

ID HARMONY

and place this card in front of your card deck. When the cards appear in
your virtual card reader, you can read them onto your CMS A-disk with the
READCARD command:

readcard dataproc assemble

You can use the editor to remove any DOS control cards that may be
included in the deck.

See the VM/SP eMS User's Guide for a description of CMS tape label
processing for CMS/DOS tape files. The support for tape labels is only for
files defined by a DTFMT macro. If you do not use this macro, CMS
bypasses IBM standard labels on input tapes and writes a tape mark over
any existing labels on an output tape. The CMS LABELDEF command is
equivalent in CMS/DOS to the VSE TLBL control statement when standard
tape label processing is used.

The ASSGN Command

The ASSGN command performs the same function for CMS/DOS as the
ASSGN control statement in VSE. The ASSGN· command in CMS/DOS
assigns a system or programmer logical unit (SYSxxx) to a virtual I/O
device. A logical unit is a symbolic name a program may use to refer to a
real I/O device without knowing the device address.

If the device is a disk, you can use the DLBL command to establish a real
file identification for a symbolic filename in a program. The DLBL
command is described under "Using the DLBL Command." As in VSE, you
are not allowed to assign the system residence volume via the ASSGN
command.

In addition to using the ASSGN command to relate real I/O devices with
symbolic units, you must use it in CMS/DOS to:

• Assign SYSIN or SYSIPT for the input source file for a language
compiler when you use the DOSPLI or FCOBOL commands.

214 VM/SP eMS for System Programming

/'

[D)c~ ,\7 e ~~) ~J a uu [j \\J ~3 L~ P ~'Q3 qj u2 C1 UllU G
~------------.----.--------------- .-----------.----------.-----==_~ __ ::=__::~~:_=-_=__=_=_=~::_~=__=__=___::::..-.=--=-=====--=---===--=J

o Identify the disk, by mode letter, on which a private core image,
relocatable, or source statement library resides.

• Assign SYSIN or SYSIPT to the eMS disk on which an ESERV file,
containing control statements for the ESERV program, resides.

When you enter the ASSGN command, you must supply the logical unit and
the device. For example:

assgn syslOO printer

assigns the logical unit SYSI00 to the printer. When you want to make an
assignment to a disk device, you must specify the mode letter where the
disk is accessed. You must also access the disk before making an
assignment to the disk. The command:

assgn sys010 b

assigns the logical unit SYSOI0 to your B-disk.

Assigning System Logical Units

SYSIPT, SYSRDR, SYSIN

SYSLST

SYSLOG

The system logical units you can assign and the valid device types you can
assign to the units in CMS/DOS are listed below.

Some VSE system logical units cannot be assigned to a VSE formatted
FB-512 device. These units are listed below. An error message is issued
and the command terminated if any of the unsupported system logical units
are specified in the ASSGN command.

You can assign SYSIPT, SYSRDR, and SYSIN to disk (mode), TAPE, or
READER. If you make an assignment to SYSIN, both SYSRDR and
SYSIPT are also assigned the same device. SYSIPT, SYSRDR, and SYSIN
cannot be assigned to a VSE formatted FB-512 device.

You can assign SYSLST, the system logical unit for listings, to disk (mode),
PRINTER, or TAPE. An assignment to DOS FB-512 disks is not supported.

You can assign SYSLOG, terminal or operator output or messages, to
PRINTER or TERMINAL. CMS/DOS always assigns SYSLOG to
TERMINAL by default, so you never have to make this assignment except
when you want to alter it.

Chapter 9. Developing VSE Programs under CMS 215

L ___ . _______ . _________ . __ ._._ .. _______ . ___ . ________________________________ . ______ _

SYSPCH

You can assign SYSPCH, punched output (for example, text decks), to
PUNCH, disk (mode), or TAPE. An assignment to DOS FB-512 disks is not
supported.

SYSCLB,SYSRLB,SYSSLB

You can assign SYSCLB, SYSRLB, and SYSSLB to private core image,
relocatable, and source statement libraries, respectively. The only valid
assignment for these units is to disk (mode). If you want to reference
private libraries with the DOSLKED, DSERV, ESERV, FETCH, SSERV, or
RSERV commands, you must assign SYSCLB, SYSRLB, or SYSSLB to the
disks where the libraries reside.

Compiler 1/0 Assignments

The compilers supported by CMS/DOS expect input/output to be assigned to
the following devices:

• SYSIN/SYSIPT must be assigned to the device where the input source
file resides. Valid device types are reader, tape, or disk.

You must assign SYSIN/SYSIPT. If it is unassigned at compilation
time, an error message is issued and the FCOBOL or DOSPLI command
is terminated.

o The user should assign the following logical units to any of the
indicated device types:

SYSPCH and SYSLST to tape, punch, disk, or IGN

If SYSPCH or SYSLST are unassigned at compilation time, the
FCOBOL or DOSPLI EXEC file directs output to the disk where
SYSIN resides if SYSIN is assigned to a read/write CMS disk.
Otherwise, output is directed to the CMS read/write disk with the
most read/write space.

SYSLOG to terminal

If SYSLOG is unassigned, it is assigned to the terminal.

SYSOOl, SYS002, and SYS006 to disk.

If SYSOOl, SYS002, and SYS006 are unassigned, output is directed to
the CMS disk with the most read/write space.

SYS003-SYS005 to tape or disk.

If SYS003 through SYS005 are unassigned, output is directed to the ,"
CMS disk with the most read/write space.

216 VM/SP eMS for System Programming

l!JGvG~(Qr;)Uu-l1qj v8~ rrJu\J~~U·l]U liuG
[_._--------------------------_._._--_._-_. __ ._--- -------- '---'" -- -... -- ---------.-=.J

The maximum number of work files is six for DOS/VS COBOL Compiler
(FCOBOL) and two for DOS PL/I Optimizing Compiler (DOSPLI).

Manipulating Device Assignments

You can assign programmer logical units SYSOOO through SYS241 with the
ASSIGN command. This deviates from VSE where the number of
programmer logical units varies according to the number of partitions.
Besides assigning I/O devices, the ASSGN command can also negate a
previous assignment:

assgn syspch ua

Also, for a given device, ASSGN can specify that no real I/O operation
(NOP) is to be performed during the execution of a program:

assgn sys009 ign

When you release a disk from your virtual machine, any assignments made
to that d~sk are unassigned.

Listing 1/0 Assignments

You can find out the current assignments for system and programmer
logical units with the LISTIO command, which lists all the system or
programmer logical units, even those that are unassigned.

To list only currently assigned units, enter:

listio a

To find out the current assignment of one specific unit, for example SYS100,
enter:

listio syslOO

When you use the STAT option, LISTIO lists, for disk devices, whether the
disk is read-only or read/write. For example, if you enter

listio syslOO

you may receive the reply:

SYSIOO B R/W

This reply indicates that SYS100 is assigned to the B-disk, which is a
read/write disk.

With the EXEC option of the LISTIO command, you can create a disk file
containing the list of assignments. The name of the file is $LISTIO EXEC.
It contains two EXEC numeric variables, &1 and &2, for each unit listed.
For example, if you enter the command:

listie sys081 (exec

Chapter 9. Developing VSE Programs under CMS 217

L .. ,._ .. _._, ___ . __ . __ ,_. __ ... _ . __ . ___ .. __________ .. ____ ::::::=:J

the file $LISTIO EXEC may contain the record:

&1 &2 SYS081 PRINTER

You can cancel all current assignments by leaving the CMS/DOS
environment and then re-entering it:

set dos off
set dos on

Virtual Machine Assignments

When you assign a physical device type to a system or programmer logical
unit, CMS relates the device to your virtual machine configuration. You
receive an error message if you try to assign a logical unit to a device not
in your configuration. For example, if you use the ASSGN command to
assign a logical unit to a disk file, you must specify the access mode letter
of the disk. If the disk is not accessed, the ASSGN command fails.

For another example, if you issue:

assgn syspch punch

the punch specified is your own virtual machine card punch. The actual
destination of punched output then depends on the spooling characteristics
of the punch. If it is spooled to another user or to *, then no real cards are
punched; virtual card images are placed in the virtual reader of the
destination userid, which may be another virtual machine or your own.

CMS supports only one reader, one punch, and one printer. You cannot
make any assignments for multiple output devices in CMS/DOS. When you
make an assignment for a logical unit that has already been assigned, it
replaces the current assignment.

The DLBL Command

The DLBL command performs the same functions for CMS/DOS as the
DLBL control statement in VSE. Use the DLBL command to supply
CMS/DOS with specific file identification information for a disk file that is
going to be used for input or output. For any DLBL command you issue,
you must previously have issued an ASSGN command for the disk,
specifying a system or programmer logical unit. The basic relationship is:

assgn SYSxxx mode
dlbl filename mode DSN ? (SYSxxx

Both the SYSxxx and the mode values must match on the ASSGN and
DLBL commands. The disk where the file resides must be accessed at the
specified mode.

Note: In-the CMS/DOS and CMS/VSAM environments, filemodes "R" and
"T" cannot be used on the DLBL command. These filemodes cannot be used

218 VM/SP eMS for System Programming

c--------------------·----------=--=_--_--_-_-__ -_----_---_--_-----_--_---_----_----_-__ ._-_---_-----_-_-________________ _

because in CMS/DOS and CMS/VSAM, "R" and "T" are used as
abbreviations for reader and terminal.

The filename on the DLBL command line, called a ddname. in CMS/DOS,
corresponds to the symbolic name for a file in a program. If you want to
reference a private DOS library, you must use one of the following
filenames:

System Logical Unit

SYSCLB
SYSRLB
SYSSLB

Entering File Identifications

Filename

IJSYSCL
IJSYSRL
IJSYSSL

When you issue the DLBL command you must identify the file, by file-id
(for a VSE file) or by file identifier (for a CMS file). The keywords DSN
and CMS indicate whether it is a VSE file or a CMS file, respectively.

If the file is a VSE file residing on a DOS disk, you can enter the DLBL
command in one of three ways. For example, for a file named
TEST.FILE.INPUT you may enter either:

assgn syslOl d
dlbl infile d dsn test.file.input (syslOl

-- or --

dlbl infile d dsn test file input (syslOl

-- or --

assgn syslOl d
dlbl infile d dsn ? (syslOl

h _]

For any VSE file with a file-id that contains embedded blanks, you must use
the "DSN?" form, shown in the third example above. When you enter the
DLBL command with the? operand, you are prompted to enter the DOS
file-id:

Enter data set name:

Then you can enter the DOS file-id. For example,

test.file.input

When you issue a DLBL command for a CMS file, you enter the filename
and file type following the keyword CMS:

assgn sysl02 a
dlbl outfile a ems new output (sysl02

Chapter 9. Developing VSE Programs under CMS 219

c=== __________ __ _. __ ... _ .. ". ___ .. __________ ._ ... _,, ___ ___________ ._ ... __ ... __ ... _. __ . __ ._. __ . __________ . ______ _,, ______ 1

In this example, if SYSI02 is defined as an output file for a program, the
output is written to your CMS A-disk in a file named NEW OUTPUT.

You can, for convenience, use a CMS default file identifier. If you enter:

dlbl outfile a cms (sysl02

then the output filetype defaults to that of the ddname and the filename to
FILE. So, this output file is named FILE OUTFILE.

Clearing and Displaying File Definitions

You can clear a DLBL definition for a file by using the CLEAR operand of
the DLBL command:

dlbl outfile clear

To clear all existing definitions, except those entered with the PERM
option, you can enter:

dlbl * clear

This command is issued by the assembler and the language processors when
they complete execution. Definitions entered with the PERM option must
be individually cleared.

Whenever you use the HX Immediate command to halt the execution of a
program, the DLBL definitions in effect are cleared, including those entered
with the PERM option.

You can find out what definitions are currently in effect by issuing the
DLBL command with no operands:

dlbl

or you can use the QUERY command with the DLBL operand.

Using DOS Libraries in eMS/DOS

CMS/DOS provides you with the capability of using various types of files
from DOS system or private libraries. You can copy, punch, display at the
terminal, or print:

• Books from system or private source statement libraries using the
SSERV command. Books refer to macros and source programs in a
source statement library.

• Relocatable modules from system or private relocatable libraries using
the RSERV command.

220 VM/SP eMS for System Programming

[DeVG~[j)~3Uuu~ V8l2 ~Ju'lC!J[3U'G}Ul{US
.. ~~~=~~ __ ~~~~~=..~~: __ :..::~~~_:~.:..:~~~~~~~=~~~~~=~=_==-=~--==-:=~:::=-==-_-=-----=--====-====-=--=--==-~ ___ :'::=:J

The SSERV Command

o Procedures from the system procedure library using the PSERV
command.

You can also:

o Copy and de-edit macros from system and private E sublibraries using
the ESERV command.

o Access the directories of system or private libraries using the DSERV
command.

o Link-edit relocatable modules from system or private relocatable
libraries with the DOSLKED command.

o Read core image phases from system or private core image libraries into
storage for execution using the FETCH command.

If you have cataloged source programs or copy files in the system source
statement library and you want to use CMS to modify and test them, you
can copy them into CMS files using the SSERV command. For example,
suppose you want to copy a book named PROCESS from the A sublibrary
on the system residence volume. The DOS system residence is in your
virtual machine configuration at virtual address 350, and you have accessed
it as yourF-disk. First, to indicate to CMS/DOS that the system residence
is on your F-disk, you enter:

set dos on f

then you can enter the SSERV command, specifying the sublibrary
identification and the book name:

sserv a process

This creates, from the A sublibrary, a file named PROCESS COpy and
places it on your A-disk. If the book contained assembler language source
statements you would want the filetype to be ASSEMBLE, so you may
enter:

sserv a process assemble

If you want to copy a book from a private source statement library, you
must first use the ASSGN and DLBL commands to make the library known
to CMS/DOS. For example, to obtain a copy file from a private library on a
DOS disk accessed as your D-disk, enter:

assgn sysslb d
dlbl ijsyssl d dsn ? (sysslb
Enter data set name:
program. test library

Now, when you enter the SSERV command:

Chapter 9. Developing VSE Programs under CMS 221

The RSERV Command

The PSERV Command

sserv t setup copy

the book named SETUP in the T sublibrary of PROGRAM.TEST LIBRARY
is copied into a CMS file named SETUP COPY. If SETUP is not found in
the private library, then CMS searches the system library, if it is available.

In CMS/DOS, to manipulate relocatable modules that have been cataloged
either on the system or a private relocatable library you must first copy
them into CMS files with the RSERV command. You can link-edit modules
directly from DOS relocatable libraries, but if you want to add or modify
linkage editor control statements for a module, you must place the control
statements in a CMS file.

If you are copying a relocatable module from the system relocatable library,
you should make sure that you have indicated the system residence disk
when you entered the CMS/DOS environment:

set dos on f

then you can issue the RSERV command specifying the name of the
relocatable module you want to copy:

rserv rtna

The execution of this command results in the creation ofa CMS file named
RTNA TEXT on your A-disk.

If you want to copy a relocatable module from a private relocatable library,
you must first use the ASSGN and DLBL commands to make the private
library known to CMS/DOS:

assgn sysrlb d
dlbl ijsysrl d dsn reloc.lib (sysrlb

Then, issue the RSERV command for a specific module in that library:

rserv testrtna

to create the CMS file TESTRTNA TEXT from the module named
TESTRTNA. If the module TESTRTNA is not found in RELOC.LIB, CMS
searches the system library, if it is available.

If you want to copy DOS cataloged procedures into CMS files to use in
preparing job streams for a DOS virtual machine, you can use the PSERV
command:

pserv prepjob

222 VM/SP eMS for System Programming

c

The ESERV Command

-- --J

This command creates a CMS file on your A-disk. The file is named
PREPJOB PROC. To copy a procedure from the procedure library you must
have entered the CMS/DOS environment specifying a disk mode for the
system residence volume.

You cannot execute DOS/VSE procedures directly from the CMS/DOS
environment. However, if you modify a procedure, you can punch it to a
virtual machine that is running a DOS system and execute it there.

The CMS/DOS ESERV command is actually an EXEC procedure that calls
the VSE ESERV utility program. To use the ESERV program, you first
must IPL CMS with a CMSBAM DCSS (shared segment), then create a file
with a filetype of ESERV that contains the ESERV control statements you
want to execute.

For example, if you want to write a de-edited copy of the macro DTFCD
onto your A-disk, you might create a file named DTFCD ESERV, with the
record:

PUNCH E.DTFCD

Just as when you submit ESERV jobs in DOS, column 1 must be blank.

Prior to executing the ESERV program, you must enter the CMS/DOS
environment by specifying the SET DOS ON command using a VSE system
residence volume. This is necessary because the ESERV procedure invokes
the ESERV program directly from the VSE core image library.

Then, you must assign SYSIN to the device on which the ESERV source
file resides, usually your A-disk:

assgn sysin a

Then you can enter the ESERV command specifying the filename of the
ESERV file:

eserv dtfcd

No other ASSGN commands are required. The CMS/DOS ESERV EXEC
makes default assignments for SYSPCH and SYSLST to disk.

To copy and de-edit macros from a private E sublibrary, issue the ASSGN
and DLBL commands to identify the library. For example, to identify a
source statement library named TEST .MACROS on the DOS disk accessed
as the C-disk, enter:

assgn sysslb c
dlbl ijsyssl c dsn test.macros (sysslb

The SYSLST output is contained in a eMS file with the same filename as
the ESERV file and -a filetype of LISTING. You must examine the LISTING
file to see if the ESERV program executed successfully.

Chapter 9. Developing VSE Programs under CMS 223

[____ • __ ~ ____ • ________________________ •• ____ •• h •• _. __ • ___ • __ • ___ • _____ • __ ._. ___ •• ___ .. ______________ • _________________ :::J

The DSERV Command

The SYSPCH output is contained in a file with the same name as the
ESERV file and a filetype of MACRO. If you want to punch ESERV output
to your virtual card punch, make an assignment of SYSPCH to PUNCH.

When you use the PUNCH or DSPCH ESERV control statements,
CATAL.S, END, or /* records may be inserted in the output file. When you
use the MACLIB command to add the MACRO file to a CMS macro library,
these statements are ignored.

See "Using Macro Libraries" on page 225 for information on creating and
manipulating CMS macro libraries.

You can use the DSERV command to examine the contents of system or
private libraries. If you do not specify any options with it, the DSERV
command creates a disk file, named DSERV MAP, on your A-disk. You can
use the PRINT or TERM options to specify that the directory list is either
to be printed or displayed at your terminal. You can also use the SORT
option to create a sorted list.

In order to examine a system directory, you must have entered the
CMS/DOS environment specifying the mode letter of the DOS system
residence:

set dos on f

If you want to examine the directory of a private source statement, core
image, or relocatable library you must issue the ASSGN and DLBL
commands establishing SYSSLB, SYSCLB, or SYSRLB before using the
DSERV command.

For example, to display at your terminal a list of procedures cataloged on
the system procedure library, you would issue:

dserv pd (sort term

If the directory you are examining is for a core image library, you can
specify a particular phase name to ascertain the existence of the phase:

dserv cd phase $$bopen (term

To list the directory of a private source statement library, you would first
issue the ASSGN and DLBL commands:

assgn sysslb b
dlbl ijsyssl b dsn test.source (sysslb

then enter the DSERV command:

dserv sd

The CMS file, DSERV MAP A, contains the directory of the private source
statement library TEST.SOURCE.

224 VMjSP eMS for System Programming

[D)GVG~([D~jguufj ~s~ ~Ju'Oqjfr'C1uu'~G
[--.. ---- - .. '--'.' --.'_.' .. '.' '.' ... -.- -. - _ ... ---.--........ - .. '.'.'.- -... - - - - .- --... -------... --------.---.---.-..... --.-------.. ---'.-===:J

The DOSLI(ED Command

You can use the DOSLKED command to link-edit relocatable modules from
system or private relocatable libraries and to place these modules in a
phase library (DOSLIB). CMS searches for a module in a private
relocatable library before searching in a system relocatable library.

For more information on using the DOSLKED command, see "Link-editing
Programs in CMS/DOS" on page 240.

DOS Core Image Libraries

You can load core image phases from DOS core image libraries into virtual
storage and execute them under CMS/DOS. Since CMS cannot write
directly to DOS disks, linkage editor output under CMS/DOS is placed in a
special CMS file called a DOSLIB. When you execute the FETCH
command in CMS/DOS you can load phases from either system or private
DOS core image libraries as well as from CMS DOSLIBs. More information
on using the FETCH command is contained under "Executing Programs in
CMS/DOS" on page 243.

Using Macro Libraries

DOS macro libraries cannot be accessed directly by the VM/SP assembler.
If you want to assemble DOS programs in CMS/DOS that use DOS macro or
copy files that are on the system or a private macro library, you must first
create a CMS macro library (MACLIB) containing the macros you wish to
use. Since the process of creating a CMS MACLIB from the DOS toptem
source statement library (E sublibrary) can be very time-consuming, you
should check with your installation's system programmer to see if it has
already been done and to verify the filename of the macro library, so that
you can use it in CMS/DOS.

Note: The DOS PL/I and DOS/VS COBOL compilers executing in
CMS/DOS cannot read macro or copy files from CMS MACLIBs. Macros
and copy files are obtained instead from a DOS source statement library.

If you want to extract DOS system macros to modify them for your private
use, or if you want to use macros from a private library in CMS, you must
use the procedure outlined below to create the MACLIB files.

Creating CMS MACLIBs

A CMS macro library has a filetype of MACLIB. You can create a
MACLIB from files with filetypes of MACRO or COPY. A MACRO file may
contain macro definitions. COpy files contain predefined source
statements.

Chapter 9. Developing VSE Programs under CMS 225

--~

To create a CMS macro library, each macro or copy file you want included
in the MACLIB must first be contained in a CMS file with a filetype of
COpy or MACRO. If you are creating a CMS MACLIB file from a DOS
library, you must use the SSERV command to copy a file from any source
statement library other than an E sublibrary or use the ESERV command
to copy and de-edit a macro from an E sublibrary. The SSERV command
uses a default filetype of COpy. The ESERV command uses a default
filetype of MACRO.

The following example shows how to copy macros from various sources and
shows how to create and use the CMS MACLIB that contains these macros:

1. Enter the CMS/DOS environment with the DOS system residence on a
disk accessed as mode C:

set dos on c

2. Copy the macro book named OPEN from the A sublibrary of the system
source statement library:

sserv a open

3. Establish a private source statement library:

access 351 d
assgn sysslb d
dlbl ijsyssl d dsn ? (sysslb
test source. lib

4. Issue the SSERV command for a macro in the M sublibrary of TEST
SOURCE.LIB:

sserv m releas

5. Create an ESERV file to copy from the E sub library:

xedit contrl eserv
input punch contrl
file

6. Execute the ESERV command:

assgn sysin a
eserv contrl

7. Create a CMS macro library named MYDOSMAC from the files just
created, which are named OPEN COpy, RELEAS COpy, and CONTRL
MACRO:

maclib gen-mydosmac open releas contrl

See "The MACLIB Command" on page 227 for more details.

8. To use these macros in an assembler language program, you must
indicate that this MACLIB is accessible before assembling a source file:

226 VM/SP CMS for System Programming

,/

[DEnj0~(f]rJDUu~j "SIT: rU"C~U"arulls
c-------------------------··-----·-·-----·----·::--------------------.----.------.---_.---------------------:1

global mac lib mydosmac

See "The GLOBAL Command" on page 235 for more details.

Rather than issuing these commands every time you want to copy and
create macros, you can put these commands in an EXEC.

The MACLIB Command

Creating a Macro Library

GET { MACRO} , PDUMP
COpy

The MAC LIB command performs a variety of functions. You use it to:

o Create the MAC LIB (GEN function).
o Add, replace, or delete members (ADD, REP, and DEL functions).
o Compress the MACLIB (COMP function).
o List the contents of the MACLIB (MAP function).

Descriptions of these MACLIB command functions follow.

The GEN (generate) function creates a CMS macro library from input files
specified on the command line. The input files must have filetypes of either
MACRO or COPY. For example:

mac lib gen mymac get pdump put regequ

creates a macro library with the file identifier MYMAC MACLIB Al from
macros existing in the files with the file identifiers:

{
MACRO} ,PUT J MACRO} ,and REGEQU J MACRO}
COpy 1 COpy 1 COpy

If a file named MYMAC MAC LIB Al already exists, it is erased.

Assume that the files GET MACRO, PDUMP COPY, PUT MACRO, and
REGEQU COpy exist and contain macros in the following form:

GET MACRO
GET

WAIT

PDUMP COPY
*COPY PDUMP

PDUMP
*COPY WAIT

WAIT

PUT MACRO
PUT

REGEQU COpy
XREG

YREG

The resulting file, MYMAC MACLIB AI, contains the members:

GET
WAIT
PDUMP

WAIT
PUT
REGEQU

The WAIT macro, which appears twice in the input to the command, also
appears twice in the output. The MACLIB command does not check for
duplicate macro names. If, at a later time, the WAIT macro is requested
from MYMAC MACLIB, the first WAIT macro encountered in the directory
is used.

Chapter 9. Developing VSE Programs under CMS 227

L ______________ . ______ .. ___ .. _ .. _ _ -- ___ ... ______ .. _____ .. ______ . ________________________________ -. ___ __ ..

When COpy files are added to MACLIBs, the name of the library member is
taken from the name of the COpy file or from the *COPY statement, as in
the file PDUMP COpy, above.

Note: Although the file REGEQU COpy contained two macros, they were
both included in the MACLIB with the name REGEQU. When the input
file is a MACRO file, the member name is taken from the macro prototype
statement in the MACRO file.

Adding a Member to a Macro Library

The ADD function appends new members to an existing macro library. For
example, assume that MYMAC MACLIB Al exists as created in the
example in the explanation of the GEN function and the file DTFDI COpy
exists as follows:

*COpy OTFOI
OTFOI macro definition

*COpy DIMOO
DIMOO macro definition

If you issue the command:

mac lib add mymac dtfdi

the resulting MYMAC MACLIB Al contains the members:

GET
WAIT
POUMP
WAIT

Replacing a Member of a Macro Library

PUT
REGEQU
DTFDI
DIMOO

The REP (replace) function deletes the directory entry for the macro
definition in the files specified. It then appends new macro definitions to
the macro library and creates new directory entries. For example, assume
that a macro library TESTMAC MACLIB contains the members ALPHA,
BETA, and SIGMA, and that the following command is entered:

maclib rep testmac alpha sigma

The files represented by file identifiers ALPHA MACRO and SIGMA
MACRO each have one macro definition. After execution of the command,
TESTMAC MACLIB contains members with the same names as before, but
the contents of ALPHA and SIGMA are different.

Deleting a Member of a Macro Library

The DEL (delete) function removes the members from the macro library
directory and compresses the directory so there are no unused entries. The
macro definition still occupies space in the library, but since no directory
entry exists, it cannot be accessed or retrieved. If you attempt to delete a /'
macro for which two macro definitions exist in the macro library, only the
first one encountered is deleted. For example:

)

228 VM/SP eMS for System Programming

maclib del mymac get put wait dtfdi

deletes macro names GET, PUT, WAIT, and DTFDI from the directory of
the macro library named MYMAC MACLIB. Assume that MYMAC exists
as in the ADD function example. After the above command, MYMAC
MACLIB contains the following members:

PDUMP
WAIT
REGEQU
DIMOD

Compressing a Macro Library

Execution of a MACLIB command with the DEL or REP functions can
leave unused space within a macro library. The COMP (compress) function
removes any macros that do not have directory entries. This function uses
a temporary file named MACLIB CMSUTl. For example, the command:

maclib comp mymac

compresses the library MYMAC MACLIB.

Listing Information about Members of a Macro Library

The MAP function creates a list containing the name of each macro in the
directory, the size of the macro, and its position within the macro library.
If you want to display a list of the members of a MACLIB at the terminal,
enter the command:

maclib map mymac (term

The default option, DISK, creates a file on your A-disk which has a filetype
of MAP and a filename equal to the filename of the MACLIB. If you
specify the PRINT option, then a copy of the map file is spooled to your
virtual printer as well as being written onto disk.

Note: The DISK, PRINT, and TERM options erase the old MAP file, if one
exists.

You can also retrieve information for specific members of the library by
indicating the member names following the MAP operand. For example:

maclib map mylib swerve yield

returns the information for only members SWERVE and YIELD of MYLIB
MACLIB.

If you want to place that information in the program stack, use the STACK
option of the MAP operand. The information can be stacked· FIFO (first-in
first-out) or LIFO (last-in first-out). The default order when STACK is
specified alone is FIFO. The options STACK, STACK FIFO, and FIFO are
equivalent. The options STACK LIFO and LIFO are equivalent. For
example:

Chapter 9. Developing VSE Programs under CMS 229 .

l ____ . ___ ________ .. _. ________________ . ___ . _____ ._. _________ ... _______ . _____ . __ ____ ... _ ... _. ___ ._ _. ________ . __ .. _ ___ . _ . ___ ... 1

maclib map mylib neutral reverse (stack fifo

stacks in the program stack, the returned information for the NEUTRAL
and REVERSE members of MYLIB in first-in first-out order.

Manipulating MACLIB Members

The following CMS commands have a MEMBER option, which allows you
to reference individual members of a MACLIB:

• PRINT (to print a member)
o PUNCH (to punch a member)
• TYPE (to display a member)
o FILEDEF (to establish a file definition for a member)
o XEDIT (to create and/or edit a specific member).

You can use the editor to create the MACRO and COpy files and then use
the MACLIB command to place them in a library. Once they are in a
library, you can erase the original files, or you can edit a member of a CMS
library using the XEDIT command with the MEMBER option. For
example, entering the command:

xedit mylib mac lib al (member swerve

If the SWERVE member does not exist in that library, a new file is created
with a fileid of SWERVE MEMBER Al. If SWERVE is an existing member
of MYLIB MACLIB, then you can edit the file.

You can also select members of a specific CMS library to edit from your
MACLIST (invoked by the MACLIST command).

Note: You cannot create a new MACLIB using the MEMBER option of the
XEDIT command. You must use the MACLIB command with the GEN
option to create a new MACLIB.

To extract a member from a macro library, you can use either the PUNCH
or the MOVEFILE command. If you use the PUNCH command, you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *

Then punch the member:

punch testmac maclib (member get noheader

and read it back onto disk:

readcard get macro

In the above example, the member was punched with the NOHEADER
option of the PUNCH command, so that a name could be assigned on the
READCARD command line. Ifa header had been created for the file, it
would have indicated the filename and filetype as GET MEMBER.

230 VM/SP eMS for System Programming

[GGVG~o~')au'uO It7S[2 LJu'(~[J[j1C1UlillS
C~-====~~ ___ ~· __ -:"' ___ ~':=:""-~·~~.:":':~.-=::-':"-:--=-=-·::"·.::~=~~.===:":::'-":'=:':""='::'-:~==":":'::="':':=~-=-==-===.:':-=':'====:=~===:]

If you use the MOVEFILE command, you must issue a file definition for the
input member name and the output macro or copy file before entering the
MOVEFILE command:

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

This example copies the member ENTER from the macro library
TESTCOPY MACLIB A into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members
from CMS MACLIBs, each member is followed by a / / record, which is a
MACLIB delimiter. You can edit the file and use the DELETE
subcommand to delete the / / record.

If you wish to move the complete MACLIB to another file, use the
COPYFILE command.

To print a single member or all members of a macro library, use the CMS
PRINT command with the MEMBER option. To display on the terminal a
single member or all members of a macro library, use the CMS TYPE
command with the MEMBER option.

The MACLIST Command

The MACLIST command displays a list of all members in a specified macro
library. MACLIST provides you with an easy way to select and edit CMS
maclib members. CMS commands can be issued against the members
directly from the displayed list. The commands execute when you press the
ENTER key (which is set to the EXECUTE command).

In the MACLIST environment, information that is normally provided by the
MACLIB command (with the MAP option) is displayed under the control of
the System Product editor. You can use XEDIT subcommands to
manipulate the list itself.

The following MACLIST screen was created by issuing the MACLIST
command as follows:

maclist mylib

Note that the members are sorted alphabetically by member name.
Members with the same name are then sorted by index number (least to
greatest).

Chapter 9. Developing VSE Programs under CMS 231

[Q)C)\JO~Q,[})Duu2J v8~ [?r?GQl[/Ouuuo
L._,_ ... _, __ . ___ , .. _.,_ __ ... __ ... _________ ._..:..... __ . ______ .. _ .. __ . _______ . ___ . __ ._._._._._ .. ____ . __ .. _____ .. _ _ ."". __ _. , ___ ,. 1

,
FARRELL MACLIST AO V 130 Trunc=130 Size=18 Line=l Col=l A1t=0 ""

Cmd Member name Index Records Library name Library type fvlode
CAUTION 190 6 MYLIB MACLIB A1
FAST 240 25 MYLIB MACLIB A1
FORWARD 613 57 MYLIB MACLIB A1
GO 197 25 MYLIB MACLIB A1
GO 615 25 MYLIB MACLIB A1
LTURN 546 55 MYLIB MACLIB A1
NEUTRAL 266 5 MYLIB MACLIB A1
PARK 602 4 MYLIB MACLIB A1
REVERSE 272 118 MYLIB MACLIB A1
RTURN 524 21 MYLIB MACLIB A1
SKID 391 43 MYLIB MACLIB A1
SLOW 671 61 MYLIB MACLIB A1
SLOWER 435 5 MYLIB MACLIB Al
SLOWEST 441 82 MYLIB MACLIB A1
SPEED 2 132 MYLIB MACLIB A1
STOP 607 5 MYLIB MACLIB A1
SWERVE 223 16 MYLIB MACLIB Al
YIELD 135 54 MYLIB MACLIB A1

1= Help 2= Refresh 3= Quit 4= Sort (name) 5= Sort(index) 6= Sort(size)
7= Backward 8= Forward 9= FL In 10= 11= XEDIT 12= Cursor
====>

XED I T 1 File

\. .J

Figure 24. Sample MACLIST Screen

Finding Members in Your MACLIST List

If there are many members in the maclib, the list may take up more than
one screen. To find a member in your MACLIST list, you can do any of the
following:

o Scroll through the list using the PF keys.

PF7 Scrolls backward one full screen.

PF8 Scrolls forward one full screen.

o Rearrange the list using one of the following PF keys:

PF4 Sorts the list by member name. This is how the list is
initially arranged.

PF5 Sorts the list by index (largest first). The most recently
updated members will have a greater number.

PF6 Sorts the list by size (largest to smallest).

• Use the XEDIT subcommand LOCATE if you know the member name
that you are looking for.

e Rearrange the list by entering one of the following synonyms on the
command line.

232 VM/SP eMS for System Programming

[G~J'U(J~C:.")~-)~u-uCJ \'J8L~ lJ[j'I~CJU1[}O~~O
C=~== ____ :_~=_' __ ' _'~=~=_,~:,:~=~~_~::,:,~:~~",:~~~~~~::,:, __ ~,:"-,,,: ... ___ ~=~~,,~:_~:~===.~.=~~=:'::=~:::==-'-:-~,~=~=~:::"::'~=.::J

SINDEX Sorts the list by index (greatest to least) within a library.

SLIB Sorts the list alphabetically by library fileid.

SNAME Sorts the list alphabetically by member name. This is how
the list is initially arranged.

SSIZE Sorts the list by member size (number of records, greatest
to least).

Entering Commands In the MACLIST Environment

You can type commands that operate on member names in the list directly
on the lines of the MACLIST display. When you press the ENTER key, all
commands typed on the lines in the file displayed on the current screen are
executed. Symbols can be used to represent operands in the command to be
executed. Symbols are needed if the command to be executed has operands
or options that follow the fileid. For example to issue the PRINT command
for this member of your MACLIST:

NEUTRAL 266 5 MYLIB MACLIB Al

type directly on the line that contains this member as follows:

print /EUTRAL 266 5 MYLIB MACLIB Al

and then press the ENTER key. Refer to the MACLIST command in the
VM/ SP CMS Command Reference for more information about using
symbols in MACLIST.

Another way to issue commands that make use of member names displayed
is to move the current line to the first (or only) member you want the
command to use. Then issue EXECUTE (in the form "EXECUTE lines
command") from the XEDIT command line. This method may be used on
both display and typewriter terminals. You can also enter commands from
the MACLIST command line.

Editing a Maclib Member: The MACLIST command allows you to select
and edit a CMS maclib member from the list. To edit a member, position
the cursor on the line that contains the member to be edited and press the
PFll key. Otherwise, you can edit a CMS maclib member by using the
XEDIT command with the MEMBER option. For example, to edit the
SWERVE member of MYLIB maclib, enter:

xedit mylib maclib al (member swerve

If the SWERVE member did not exist in MYLIB MACLIB, a new file is
created with a fileid of SWERVE MEMBER AI.

Chapter 9. Developing VSE Programs under eMS 233

l

Adding and Replacing Maclib Members: When the MEMBER option is
specified for the XEDIT command for a member that does not exist in the
library, a new file is created with the fileid of "membername MEMBER fm".

If the MEMBER option is specified on the XEDIT command for an existing
member of a library, the member is read into a file called "membername
MEMBER fm" for you to edit.

When you issue FILE or SAVE for the new or changed member, the library
directory is updated. The new or changed member and the updated library
directory are added to the end of the library. If the directory already
contains a member with the same name as the one being saved, the old
entry is blanked out, so that the updated member replaces the old version.

Deleting Maclib Members: Use the DISCAED command to delete a
member from a library. DISCARD is equivalent to the CMS command
MACLIB DEL. DISCARD can either be typed in the command area of the
line that describes the member you want discarded, or it can be entered
from the command line (at the bottom of the screen). DISCARD can only be
used while in the FILELIST, RDRLIST, MACLIST, and PEEK command
environments.

Setting MACLIST Defaults: When XEDIT is invoked by the MACLIST
command to display the list, the default XEDIT macro, PROFMLST XEDIT,
is executed. If you want to invoke a different XEDIT macro, you can
specify the PROFILE option with the MACLIST command. For example, to
invoke MACLIST with the MYMCLST XEDIT macro, enter

rnaclist rnylib (profile rnyrnclst

You can do the same with the COMPACT and NOCOMP ACT options of the
MACLIST command.

If you are using an alternate profile most of the time, you may change the
default profile with the DEFAULTS command. For example:

defaults set rnaclist profile rnymclst

Entering the DEFAULTS command with no options provides you with the
status of defaults currently in effect. For example, entering

defaults

after changing the XEDIT macro, returns the following information:

234 VMjSP OMS for System Programming

[GGU8~O~)DuJ[J VGl: ~-)G~O[Ju'c1ulr~G
c .. -.-.---- .. -.. -... -.-------:-.-----.-.--------..... -_. __ . ____ . ____ u_ .. _ .. ________ . ___ . __ ... ____ .. __ . __ . _____ ·.·_u· ____ ········ __ · ... -... ----.--.-.- ... - ... - --.- --.-..... -.-....... -.. -]

The following default options have been set:

Filelist options = PROFILE PROFFLST NOFILELIST
Help options = SCREEN BRIEF ALL
Maclist options = PROFILE MYMCLST NOCOMPACT
Note options = PROFILE PROFNOTE SHORT LOG NOACK NOTEBOOK ALL
Peek options = PROFILE PROFPEEK FROM 1 FOR 200
Rdrlist options = PROFILE PROFRLST
Receive options = LOG OLDDATE NOTEBOOK ALL
Sendfile options = NEW TYPE NOFILELIST LOG NOACK
Tell options = MSGCMD MSG

To change any default options enter DEFAULTS Set Cmdname Optl <Opt2 .. >

The GLOBAL Command

System MACLIBs

When you want to assemble a source program that uses macro or copy
definitions, you must ensure that the library containing the code is
identified before you invoke the assembler. Otherwise, the library is not
searched. You identify libraries to be searched using the GLOBAL
command. For example, if you have two MACLIBs that contain your
private macros and copy files whose names are TESTMAC MACLIB and
TESTCOPY MACLIB, you would issue the command:

global mac lib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify them. A GLOBAL command remains in effect for the
remainder of your terminal session, until you issue another GLOBAL
MACLIB command or until you IPL CMS. To find out what macro libraries
are currently available for searching, issue the command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

The macro libraries that are on the system disk contain CMS and OS
assembler language macros you may want to use in your programs. The
MACLIBs are:

o CMSLIB MACLIB contains the CMS macros from VM/370.

o DMSSP MACLIB contains macros that are new or changed in VM/SP.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP
should precede CMSLIB in the search order.

o DOSMACRO MACLIB contains macros used internally by CMS/DOS.

Chapter 9. Developing VSE Programs under CMS 235

c:-______ . ___ .. _. ___ _ " .. _._ _ " ____ _ ~==::-:=:-:-~~:=~.-~'.- -- .. _-_ ... -._---------------_ ... __ .. _----_._ .. -._---_._-.. _-----_._--_._._------_._J

Note: These macros should not be used in user written programs. To
assemble programs that use VSE macros, you should follow the
procedures as previously described in this chapter.

o OSMACRO MACLIB, OSMACROI MACLIB, and TSOMAC MACLIB
are used by OS programmers.

o DMKSP MACLIB contains macros that support CPo

o OSVSAM MACLIB contains the subset of supported OS/VSAM macros.

To obtain a list of macros in any of these libraries, use either the MACLIST
command or the MACLIB command with the MAP function. In the
MACLIST environment, you can issue CMS commands against the members
directly from the displayed list. You can find the MACLIST command
description in the VM/ SP CMS Command Reference.

When you use VSAM on CMS and write programs using VSE/VSAM
macros, you can build a VSE/VSAM maclib by issuing the CMS VSEVSAM
command. The maclib contains the supported VSE/VSAM macros and the
following VSE macros:

CDLOAD
CLOSE
CLOSER
GET
OPEN
OPENR
PUT

Refer to the VM/ SP Installation Guide for the CMS VSEVSAM command
documentation.

VSE Assembler Language Macros Supported

Figure 25 on page 237 lists the VSE assembler language macros supported
by CMS/DOS. You can assemble source programs that contain these
macros under CMS/DOS, provided that you have the macros available in
either your own or a shared CMS macro library. The macros whose
functions are described in the "Function" column with the term "no-op" are
supported for assembly only; when you execute programs that contain these
macros, the VSE functions are not performed. To accomplish the macro
function you must execute the program on a real VSE system.

236 VM/SP eMS for System Programming

[_ ... _ .. ___ .. _ .. _._ _ ... _ ... ___ ___ .n __ ... ____ .. _._ ... _ ... __ ._ .. _~~~~:.:_ .. -._ .. _ ... ~-_--._ .. ---:.:...~_ .. -.. _.-_.n~=::._-.'_'_.'_. ___ ." __ '_' __ "_' __ .-- ._. ___ ... __ _ .. _ .. _. __ ... _ ... __.~.~~_ . .:....~

r,:I~cro svc
NnnlC NunllJm' Ii'unction

CALL Pass control to another program

CANCEL 06 Terminate processing

CDLOAD 65 Load a VSAM phase

CHECK Verify completion of a read or write operation

CLOSEt Deactivate a data file
CLOSER

CNTRL Control a physical device

COMRG' 33 Return address of background partition communication region

DEQ 41 no-op

DTFxx Establish file definitions

DUMP Dump storage and registers and terminate processing

ENQ 42 no-op

EOJ 14 Terminate processing normally

ERET Provide an error routine

EXCP 00 Execute a channel program

EXIT PC 17 Return from program check routine

EXIT AB 95 Return from abnormal termination routine

EXTRACT 98 Retrieve PUB, storage boundaries, or CPUID information

FCEPGOUT 86 no-op

FETCH 01 Load and pass control to a phase

02 Load and pass control to a logical transient

FREE 36 no-op

FREEVIS 62 Release user free storage

GENL Generate a phase directory list

GET Access a sequential file

GETFLD/ 107 Provide macro interface support for system information
MODFLD retrieval.

GETVCE 99 Return requested device information to output area.

GETVIS 61 Obtain user free storage

GETIME 34 Get the time of day

JDUMP Dump storage and registers and terminate processing

LOAD 04 Load a phase into storage

LOCK/ 110 Resource control
UNLOCK

MVCOM 05 Modify bytes in the partition communication region

NOTE Manage data set access

OPEN/OPENR Activate a data file

Figure 25 (Part 1 of 2). VSE Macros Supported by eMS

Chapter 9. Developing VSE Programs under CMS 237

Macro SVC
Name Number Function

PAGEIN 87 no-op

PDUMP Dump storage and registers and continue processing

PFIX 67 no-op

PFREE 68 no-op

POINTR Position a file for reading

POINTS Reposition a file to its beginning

POINTW Position a file for writing

POST 40 Post the event control block

PRTOV Control printer overflow

PUT Write to a sequential file

PUTR Communicate with the system operator

READ Access a sequential file

RELPAG 85 no-op

RELSE Skip to begin reading next block

RETURN Return control to calling program

RUNMODE 66 Check if program is running real or virtual

SECTVAL 75 Obtain a sector number

SETIME 10/24 no-op

SETPFA 71 no-op

STXIT AB 37 Provide or terminate linkage to abnormal ending routine

STXIT PC 16 Provide or terminate linkage to program check routine

STXIT IT 20 no-op

STXIT OC 18 no-op

SUB SID 105 Retrieve information on supervisor subsystem

TRUNC Skip to begin writing next block

TTIMER 52 Return a 0 in Register 0 (effectively a no-op)

WAIT 07 Wait for the completion of I/O

WRITE Write to a sequential file

xxMOD Create Logical IOCS routine in line

Figure 25 (Part 2 of 2). VSE Macros Supported by eMS

Assembling Source Programs

If you are a DOS assembler language programmer using CMS/DOS, you
should be aware that the assembler used is the VM/SP assembler, not the
DOS assembler. The major difference is that the VM/SP assembler, invoked
by the ASSEMBLE command, is designed for interactive use. Therefore,
when you assemble a program, error messages are displayed at your
terminal when compilation is completed, and you do not have to wait for a

238 VM/SP eMS for System Programming

lDeve~@rjnu1)~ ~§~ ~~)U~(Q)DUAC1u~uS
c -------------------------------- ----------------------]

printed listing to see the results. You can correct your source file and
reassemble it immediately. Then you can print the listing error free.

To specify options to be used during the assembly, you enter them on the
ASSEMBLE command line. So, for example, if you do not want the output
LISTING file placed on disk, you can direct it to the printer:

assemble myfile (print

All of the ASSEMBLE command options are listed in VM/ SP CMS
Command Reference.

When you invoke the ASSEMBLE command specifying a file with a filetype
of ASSEMBLE, CMS searches all of your accessed disks, using the standard
search order, until it locates the file. When the assembler creates the
output LISTING and TEXT files, it writes them onto disk according to the
following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING files
are written onto the same disk.

2. If the source file is on a read-only disk that is an extension of a
read/write disk, the TEXT and LISTING files are written onto the
parent disk.

3. If the source is on any other read-only disk, the TEXT and LISTING
files are written onto the A-disk.

In all of the above cases, the filenames assigned to the TEXT and LISTING
files are the same as the filename of the input file.

The output files used by the assembler are defined via FILEDEF commands
issued by CMS when it calls the assembler. If you issue a FILEDEF
command using one of the assembler ddnames before you issue the
ASSEMBLE command, you can override the default file definitions.

The ddname for the source input file is ASSEMBLE. If you enter:

filedef assemble reader
assemble sample

then the assembler reads your input file from your card reader, and assigns
the filename SAMPLE to the output TEXT and LISTING files. You can use
this method to assemble programs directly from DOS sequential files on
DOS disks. For example, to assemble a source file named DOSPROG from a
DOS disk accessed as a C-disk, you could enter:

filedef assemble c dsn dosprog (recfm f lrecl 80
assemble dosprog

Again, the name you assign on the ASSEMBLE command may be anything.
The assembler uses this name to assign filenames to the TEXT and
LISTING output files.

Chapter 9. Developing VSE Programs under CMS 239

D)O\7G~0)fVUDufj V8~ [)U1@0jltG1mO
r- --_.-. _-. -::--:--:-1

LISTING and TEXT are the ddnames assigned to the SYSLST and SYSPCH
output of the assembler. You might issue file definitions to override these
defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble source

When these commands are executed, the output from the assembly of the
file SOURCE ASSEMBLE is written to the disk files ASSEMBLE
LISTFILE and ASSEMBLE TEXTFILE.

Link-editing Programs in eMS/DOS

When the assembler or one of the language compilers executes, the object
module produced is written to a CMS disk in a file with a filetype of TEXT.
The filename is always the same as that of the input source file. These
TEXT files (sometimes referred to as decks, although they are not real card
decks) can be used as input to the linkage editor or can be used with an
INCLUDE linkage editor control statement.

You can invoke the CMS/DOS linkage editor with the DOSLKED
command, for example:

doslked test testlib

where TEST is the filename of either a DOSLNK or TEXT file (that is, a
file with a filetype of either DOSLNK or TEXT) or the name of a
relocatable module in a system or privaterelocatable library. TESTLIB
indicates the name of the output file which, in CMS/DOS, is a phase library
with a filetype of DOSLIB.

When you issue the DOSLKED command:

1. CMS first searches for a file with the specified name and a filetype of
DOSLNK.

2. If none is found, CMS searches the private relocatable library, if you
have assigned one. You must issue an ASSGN command for SYSRLB
and use the ddname IJSYSRL in a DLBL statement.

3. If the module is still not found, CMS searches all of your accessed disks
for a file with the specified name and a filetype of TEXT.

4. Last, CMS searches the system relocatable library, if it is available.
You must enter the CMS/DOS environment specifying the mode letter
of the DOS system residence if you want to access the system libraries.

240 VM/SP eMS for System Programming

L· ..

Linftage Editor Input

Unlc-editing TEXT Files

You can place the linkage editor control statements ACTION, PHASE,
INCLUDE, and ENTRY in a CMS file with a filetype of DOSLNK. When
you use the INCLUDE statement, you may specify the filename of a CMS
TEXT file or the name of a module in a DOS relocatable library:

INCLUDE XYZ

or you may use the INCLUDE control statement to indicate that the object
code follows:

INCLUDE
(CMS TEXT file)

A typical DOSLNK file, named CONTROL DOSLNK, might contain the
following:

ACTION REL
PHASE PROGMAIN,S
INCLUDE SUBA
PHASE PROGA,*
INCLUDE SUBB

When you issue the command:

doslked control

the linkage editor searches the following for the object files SUBA and
SUBB:

o A DOS private relocatable library, provided you have issued the ASSGN
and DLBL commands to identify it:

assgn sysrlb d
dlbl ijsysrl d dsn ? (sysrlb

o Your CMS disks for files with filenames SUB A and SUBB and a filetype
of TEXT

o The system relocatable library located on the DOS system residence
volume (if it is available).

When you want to link-edit individual CMS TEXT files, you can insert
linkage editor control statements in the file using the editor and then issue
the DOSLKED command:

xed it rtnb text
input include rtnc
file
doslked rtnb mydoslib

When the above DOSLKED command is executed, the CMS file RTNB
TEXT is used as linkage editor input, as long as there is no file named

Chapter 9. Developing VSE Programs under' eMS 241

RTNB DOSLNK. The ACTION statement, however, is not recognized in
TEXT files.

You can also link-edit relocatable modules directly from a DOS system or
private relocatable library, provided that you have identified the library. If
you do this, however, you cannot directly provide control statements for the
linkage editor.

To link-edit a relocatable module from a DOS private library and add
linkage editor control statements to it, you could use this procedure:

1. Identify the library and use the RSERV command to copy the
relocatable module into a CMS TEXT file. In this example, the module
RTNC is to be copied from the library OBJ.MODS:

assgn sysrlb e
dlbl ijsysrl e dsn obj mods (sysrlb
rserv rtnc

2. Create a DOSLNK file, insert the linkage editor control statements, and
copy the TEXT file created in step 1 into it using the GET subcommand:

xedit rtnc doslnk
input action reI
get rtnc text a
file

3. Invoke the linkage editor with the DOSLKED command:

doslked rtnc mydoslib

Alternatively, you could create a DOSLNK file with the following records:
DOSLNK file

ACTION REL
INCLUDE RTNC

and link-edit the module directly from the relocatable library. If you do not
need a copy of the module on a CMS disk, you might want to use this
method to conserve disk space.

When the linkage editor is reading modules, it may encounter a blank card
at the end of a file or a * (comment) card at the beginning of a file. In
either case, the linkage editor issues a warning message indicating an
invalid card, but it continues to complete the link-edit.

Linkage Editor Output: eMS DOSLIBs

The CMS/DOS linkage editor always places the link-edited executable
phase in a CMS library with a filetype of DOSLIB. You should specify the
filename of the DOSLIB when you enter the DOSLKED command:

doslked progO temp lib

242 VM/SP eMS for System Programming

Linlcage Editor Maps

___ ""- .. -:_""._"." "_~_" "_" ____ .::_. ____ ~". ___ " __ .:....:..:.:.:.._.:. __ ..:....:_. __ ... ____ "~~"_""_. ___ ":~_~~~':':: __ .~.J

where PROGO is the relocatable module you are link-editing and TEMPLIB
is the filename of the DOSLIB.

If you do not specify the name of a DOSLIB, the output is placed in a
DOSLIB that has the same name as the DOSLNK or TEXT file being
link-edited. In the above example, a CMS DOSLIB is created named
TEMPLIB DOSLIB, or, if the file TEMPLIB DOSLIB already exists, the
phase PROGO is added to it.

DOSLIBs can contain relocatable core image phases suitable for execution
in CMS/DOS. Before you can access phases in them, you must identify
them to CMS with the GLOBAL command:

global doslib temp lib permlib

When CMS is searching for executable phases, it searches all DOSLIBs
specified on the last GLOBAL DOSLIB command. If you have named a
number of DOSLIBs or if any particular DOSLIB is very large, the time
required for CMS to fetch and execute the phase increases. You should use
separate DOSLIBs for executable phases, whenever possible. Then specify
only the DOSLIBs you need on the GLOBAL command.

When you link-edit a module into a DOSLIB that already contains a phase
with the same name, the directory entry is updated to point to the new
phase. However, the space that was occupied by the old phase is not
reclaimed. You should periodically issue the command:

doslib comp temp lib

to compress the DOSLIB and delete unused space. TEMPLIB is the
filename of the DOSLIB.

The DOSLKED command also produces a linkage editor map. It writes into
a CMS file with a filename specified on the DOSLKED command line and a
filetype of MAP. The filemode is always A5. If you do not want a linkage
editor map, use the NOMAP option on the ACTION statement in a
DOSLNK file.

EJtecuiing Programs in eMS/toOS

After you have assembled or compiled a source program and link-edited the
TEXT files, you can execute the phases in your CMS virtual machine. You
may not, however, be able to execute all your DOS programs directly in
CMS. There are a number of execution-time restrictions placed on
CMS/DOS programs. You cannot execute a program that uses:

o Multi tasking
o More than one partition
o Teleprocessing
o ISAM macros to read or write files

Chapter 9. Developing VSE Programs under CMS 243

[Q)GUG~(i]f.uo~ug V~~ [Du1@~?JU~@uuuG
c_._. __________ ._~:.._..... ______ . ________ ._. ________ . ____ .. __ . __ -.. -... _ .. _ ... --- .. ----_ .. _ ... _ .. _ __ ._---_ ... _--------------J

• CMS module files created by DOS programs
• EC mode PSW s.

The above is only a partial list representing those restrictions with which
you might be concerned. For a complete list of restrictions, see the VM/SP
Planning Guide and Reference. See also the usage notes of the FETCH
command in the VM/ SP CMS Command Reference.

Executing DOS Phases

You can load executable phases into your CMS virtual machine using the
FETCH command. Phases must be link-edited with ACTION REL before
you load them. When you issue the FETCH command, you specify the
name of the phase to be loaded:

fetch myprog

Then you can begin executing the program by issuing the START command:

start

Or, you can fetch a phase and begin executing it with a single command:

fetch prog2 (start

When you use the FETCH command without the START option, CMS
issues a message telling you at what virtual storage address the phase is
loaded:

PHASE PROG2 ENTRY POINT AT LOCATION 020000

Location X'20000' is the starting address of the user program area for CMS.
Relocatable phases are always loaded starting at this address unless you
specify a different address using the ORIGIN option of the FETCH
command:

fetch prog3 (origin 22000
start

The program PROG3 executes beginning at location 22000 in the CMS user
program area.

Search Order for Executable Phases

When you execute the FETCH command, CMS searches for the phase name
you specify in the following places:

1. In a DOS private core image library on a DOS disk. If you have a
private library you want searched for phases, you must identify it using
the ASSGN and DLBL commands using the logical unit SYSCLB:

assgn sysclb d
dlbl ijsyscl d dsn ? (sysclb

244 VM/SP eMS for System Programming

[i··~C:YUC;~~)~)UO·JCJ \,!/S~ lJu'(GOu'~1U'"~JG
l~~.~ __ '::':~_·_·-_.':~:":'::'~:':.=_~_~._ ... __ ~:.':'_.:: ___ . __ ":':":':=_-':' __ ~'::':-=-__ :':"_~~':'_._":_~:_~~_._ .. _-,,. __ . ___ ..:.:.:.:..:.=~ __ --.------- .----.-----.---.-. ------------.=.J

When you enter the DLBL command with the? operand, you are
prompted to enter the DOS file-ide

2. In CMS DOSLIBs on CMS disks. If you want DOSLIBs searched for
phases, you must use the GLOBAL command to identify the DOSLIBs to
CMS/DOS:

global doslib temp lib mylib

You can specify up to 63 DOSLIBs on the GLOBAL command line.

3. On the DOS system residence core image library. If you want the
system core image library searched you must have entered the
CMS/DOS environment specifying the mode letter of the system
residence:

set dos on z

When you want to fetch a core image phase that has copies in both the core
image library and a DOSLIB, and you want to fetch the copy from the CMS
DOSLIB, you can bypass the core image library by entering the command:

assgn sysclb ua

When you need to use the core image library, enter:

assgn sysclb c

where C is the mode letter of the system residence volume. You do not
need to reissue the DLBL command to identify the library.

Making 110 Device Assignments

If you are executing a program that performs I/O, you can use the ASSGN
command to relate a system or programmer logical unit to a real I/O device:

assgn syslst printer
assgn sys052 reader

In this example, your program is going to read input data from your virtual
card reader. The output print file is directed to your virtual printer. If you
want to reassign these units to different devices, you must be sure that the
files have been defined as device independent.

If you assign a logical unit to a disk, you should identify the file by using
the DLBL command. On the DLBL command, you must always relate the
DLBL to the system or programmer logical unit previously specified in an
ASSGN command:

assgn sys015 b
dlbl myfile b dsn ? (sysOlS

When you enter the DLBL command with the? operand you are prompted
to enter the DOS file-ide

Chapter 9. Developing VSE Programs under CMS 245

c::: _____ _ --------------------------------------- _ _____________________ . __ :::J

You must issue all of the ASSGN and DLBL commands necessary for your
program's 1/0 before you issue the FETCH command to load the program
phase and to begin executing.

Specifying a Virtual Partition Size

For most of the programs that you execute in CMS, you do not need to
specify how large a partition you want those programs to execute in. When
you issue the START command or use the START option on the FETCH
command, CMS calculates how much storage is available in your virtual
machine and sets a partition size. CMS calculates how much storage is
available in the following manner:

FREELOWE - (MAINHIGH + (4096 * FRERESPG»

where:

FREELOWE equals the low extent of allocated storage obtained from the
top of virtual storage downwards via the DMSFREE system
request.

MAINHIGH equals the high extent of allocated storage obtained from
the low virtual storage upwards via the GETVIS user
request for storage.

FRERESPG equals the amount of storage to be reserved for subsequent
system requests, in pages.

In some instances, you may want to control the partition size:

o For performance considerations

o Because the default may not leave enough free storage to satisfy the
GETVIS requests issued by the DOS program or the access method
services function being executed.

You can set the partition size with the DOSP ART operand of the SET
command. For example, after you enter the command:

set dospart 300k

all programs that you subsequently execute during this session execute in a
300K partition. In this way you can:

• Set a smaller partition size for programs that run better in smaller
parti tions.

o Set a smaller partition size to leave more free storage. If the reduction
of the DOS partition does not free enough storage for the GETVIS
requests, a larger virtual machine must be defined. If you enter:

246 VM/SP eMS for System Programming

~ ..

Setting the UPSI Byte

set dospart off

CMS calculates a partition size when you execute a program. This is
the default setting.

Note: The CMS partition, unlike the DOS partition, is used only for the
loading and executing of programs invoked by the FETCH or LOAD
commands. Areas allocated by GETVIS are assigned addresses outside the
partition but within the user's virtual machine.

If your program uses the user program switch indicator (UPSI) byte, you
can set it by using the UPSI operand of the CMS SET command. The UPSI
byte is initially binary zeros. To set it to ones, enter:

set upsi 11111111

To reset it to zeros, enter:

set upsi off

Any value you set remains in effect for the duration of your terminal
session unless you reload CMS (with the IPL command).

Debugging Programs in CMS/DOS

You can debug your DOS programs in CMS/DOS using the facilities of CP
and CMS. By executing your programs interactively, you can determine
the cause of an error or program abend, correct it, and attempt to execute a
program again. The CP and CMS debugging facilities are described in VM
Diagnosis Guide.

Using EXEC Procedures in CMS/DOS

During your program development and testing cycle, you may want to
create EXEC procedures to contain sequences of CMS commands that you
execute frequently. For example, if you need a number of MACLIBs,
DOSLIBs, and DLBL definitions to execute a particular program, you might
have an EXEC procedure as follows:

Chapter 9. Developing VSE Programs under CMS 247

ITJ)QUG~@IT»U~uB ~f§~ [Jr(Q)~1~18mrils
c==:~:-::=~====-_-=-...::: ___ . __ .. __ .. _._ _ .. _._ .. _ .. _._._._ ._ .. ___ ._ __ . __ ... _._ ... _. _________ .. ______ .. __ .. _ ___ ,, _____ ... __________ . ____________ .. ____ ._." __ ._ __ . ____ J

/* EXEC to set up environment to run program TESTA */

signal on error
global maclib testlib dosmac
assemble testa
print testa listing
doslked testa testlib
global doslib test lib proglib
access 200 e
assgn sys010 e
push dos.test3.stream.beta
dlbl inddl e dsn ? '('sys010
assgn sysOll punch
cp spool punch to '*'
assgn sys012 a
dlbl outfile a cms test data' ('sys012
signal off error
fetch testa' ('start
select

when rc = 100 then do

end
when rc

end
otherwise

exit rc
end

Error:

200 then do

say 'Error occurred on line' sigl':' sourceline(sigl)
exit rc

The 'signal on error' control statement in the EXEC procedure ensures that
if an error occurs during any part of the EXEC, the remainder of the EXEC
does not execute, and the 'Error' displays the line number where the error
occurred as well as the actual command which gave the error.

Note: For the DLBL command entered with the DSN ? operand, you must
stack the response (using 'push') before issuing the DLBL command.

When your program is finished executing, the REXX special variable RC
indicates the contents of general register 15 at the time the program exited
(the 'Return Code'). You can use this value to perform additional steps in
your EXEC procedure. Additional steps are indicated in the preceding
example by ellipses.

248 VM/SP eMS for System Programming

(0)C:YvG~~jIT)null[J l18l2 [Ju'\00ul [}uJilG
-- ---_._._--_.- -- - --- -- -- - -- . ---- - -... -.. -.. --- -- _. -- - .. - -- --- ... ' -- --- ... -.-.......... -.- -._ _- -.--.:::~

Hardware Devices Supported

CMS/DOS routines can read real DOS disks containing VSE data files and
VSE private and system libraries. This read support is limited to the
following disks supported by VSE:

o IBM 2314 Direct Access Storage Facility
o IBM 2319 Disk Storage
o IBM 3310 Direct Access Storage
o IBM 3330 Disk Storage, Models 1 and 2
o IBM 3330 Disk Storage, Model 11
o IBM 3340 Direct Access Storage Facility
o IBM 3344 Direct Access Storage
o IBM 3350 Direct Access Storage
o IBM 3370 Direct Access Storage, Models AI, A2, B1, and B2
o IBM 3375 Direct Access Storage
o IBM 3380 Direct Access Storage

The following devices, which are supported by VSE, are not supported by
CMS/DOS:

o Card Readers: 1442, 2560P, 2560S, 2596, 3504, 5425P, and 5425S

o Printers: 2560P, 2560S, 3203 Models 1 and 2,3525, 5203, 5425P, and
5425S

o Disks: 2311.

Also, CMS uses the CP spooling facilities and does not support dedicated
unit record devices. Each CMS virtual machine supports only one virtual
console, one reader, one punch, one printer, four tapes, and 26 disks.
Programs that are executed in CMS/DOS are limited to the number of
devices supported by CMS.

VSE Supervisor and I/O Macros Supported by eMS/DOS

CMS/DOS supports the VSE Supervisor macros and the SAM and VSAM
I/O macros to the extent necessary to execute the DOS/VS COBOL ..
Compiler, the DOS PL/I Optimizing Compiler, and DOS/VS RPG II Compiler
under CMS/DOS. CMS/DOS supports VSE Supervisor macros described in
the publication VSE Macro Reference.

Since eMS is a single-user system executing in a virtual machine with
virtual storage, VSE operations, such as multi-tasking, that cannot be
simulated in CMS' are ignored.

The following information deals with the type of support that CMS/DOS
provides in. the simulation of VSE Supervisor and Sequential Access
Method I/O macros. For a discussion of VSAM macros, see the section
"CMS Support for OS and VSE/VSAM Functions."

Chapter 9. Developing VSE Programs under CMS 249

[IJ)G\7e~Q)~]UUU~l ~8~ ru1 fJ)fjr<E}Uuus
r=-=====-====--==_. __ ... __ __ .. _._ :..... _____ _ .. _______:. ___ ~_. ___ _ . ________ .. _______ ... ___ ._._. ____ ._. __ ___ ._. __ ____ ._:.::...-:-:::J

Supervisor Macros

Macro

CCB (command
control block)

IORB (input/output
request block)

EXCB (execute
channel program)

WAIT

SECTV AL (sector
value)

OPEN/OPENR

LBRET (label
processing return)

FEOV (forced end of
volume)

SEOV (system end of
volume)

CLOSE/CLOSER

CMS/DOS supports physical IOCS macros and control program function
macros for VSE. Figure 26 lists the physical IOCS macros and describes
their support. Figure 27 lists the control program function macros and
their support. Refer to VM/ SP System Logic and Problem Determination
Guide Volume 2 (eMS) for details of the macros' operation.

Support

The CCB is generated.

Supported for DASD I/O.

The REAL operand is not supported. All other operands are
supported.

Supported. Issued whenever your program requires an I/O
operation (started by an EXCP macro) to be completed
before execution of program continues.

Supported for VSAM.

Supported. Activates a data file.

Not supported.

Not supported.

Not supported.

Supported. Deactivates a data file.

Figure 26. Physical IOCS Macros Supported by CMS/DOS

Function/Macro sve. No. Support
Dec Hex

EXCP 0 0 Used to read from CMS or DOS/OS formatted
disks.

FETCH 1 1 Used to bring a problem program phase into user
storage and to start execution of the phase if the
phase was found. Operand SYS = YES is not
supported.

FETCH 2 2 Used to bring a $$B-transient phase into the CMS
transient area (or if the phase is in the CMSDOS
segment, not to load it), and start exeGution of
the phase if the phase was found. Operand
SYS=YES is not supported.

FORCE 3 3 Not supported. See note 2 on page 258.
DEQUEUE

Figure 27 (Part 1 of 9). SVC Support Routines and Their Operation

250 VM/SP eMS for System Programming

c---------.-- ---- .. -- --- --- ----- -------------------.--.---- -- ----.- -- --- -._ .. - - .----.. ---- -. -----.------.--------.-.--- .. -_.----. ---J

Function/Macro sve. No. Support
Dec He::,~

LOAD 4 4 Used to bring a problem program phase into user
storage, and return the caller the entry point
address of the phase just loaded. Operand
SYS = YES is not supported.

MVCOM 5 5 Provides the user with a means of altering
positions 12 through 23 of the partition
communications region (BGCOM).

CANCEL 6 6 Cancels a VSE session either by a VSE program
request or by a request from any of the CMS
routines handling CMS/DOS.

WAIT 7 7 Used to wait on a CCB, IORB, ECB, or TECB.
(Note that CMS/DOS does not support ECB's or
TECB's). CCBs are always posted by the
DMSXCP routine before returning to the caller.

The WAIT support under CMS/DOS will
effectively be a branch to the CMS/DOS POST
routine.

CONTROL 8 8 Temporarily return control from a $$B-transient
to the problem program.

LBRET 9 9 Return to the $$B-transient after an SVC 8 was
issued to give control to the problem program.

SET TIMER 10 A No operation. Successful return code of 0 is
given in R15. See note 1.

TRANS. 11 B Return from a $$B-transient to the calling
RETURN problem program.

JOB CONTROL 12 C Resets flags to 0 in the linkage control byte in
'AND' BGCOM (communication region). If Rl = 0, bit 5

of JCSW 4 (COMREG byte 59) is turned off.

JC FLAGS 13 D Not supported. See note 2.

EOJ 14 E Normally terminates execution of a problem
program.

SYSIO 15 F Not supported. See note 2.

PC STXIT 16 10 Establish or terminate linkage to a user's
program check routine.

PC EXIT 17 11 Used to provide supervisory support for the EXIT
macro. SVC 17 provides a return from the user's
PC routine to the next sequential instruction in
the program that was interrupted due to a
program check.

IT STXIT 18 12 No operation. Successful return code of 0 is
given in R15. See note 1.

IT EXIT 19 13 Not supported. See note 2.

Figure 27 (Part 2 of 9). SVC Support Routines and Their Operation

Chapter 9. Developing VSE Programs under CMS 251

L ________ .. ____________ :_ .. __ .. _. ________ . _____ ... ~ .. _._ ... _ .. ___ .. _ __ ._. __ .. ____ .. _ .. _ __ .. _ ... _. _____ .. _ ... __ ._. ___ . __ . ___ ... _. ____ . ____ ._ _. ___ ~= ~.:::'==-=.::::-:::J

Function/Macro SVC. No. Support
DecHm.::

OC STIXIT 20 14 No operation. Successful return code of 0 is
given in R15. See note 1.

OC EXIT 21 15 Not supported. See note 2.

SEIZE 22 16 No operation. Successful return code of 0 is
given in R15. See note 1.

LOAD HEADER 23 17 Not supported. See note 2.

SETIME 24 18 No operation. Successful return code of 0 is
given in R15. See note 1.

HALT I/O 25 19 Not supported. See note 2.

26 lA Validate address limits. The upper address must
be specified in general register 2 and the lower
address must be specified in general purpose
register 1.

TP HALT I/O 27 IB Not supported. See note 2.

MR EXIT 28 lC Not supported. See note 2.

WAITM 29 ID Not supported. See note 2.

QWAIT 30 IE Not supported. See note 2.

QPOST 31 IF Not supported. See note 2.

32 20 Reserved

COMRG 33 21 Used to provide the caller with the address of the
partition communications region.

DMSDOS provides the caller with the address of
the partition communications region, in the
user's register 1.

GETIME ·34 24 Provides support for the GETIME macro. SVC 34
updates the date field in the communications
region. The GMT operand is not supported.

HOLD 35 23 No operation. Successful return code of 0 is
given in R15. See note 1.

FREE 36 24 No operation. Successful return code of 0 is
given in R15. See note 1.

AB STXIT 37 25 Establish or terminate linkage to a user's
abnormal termination routine. Supported for
OPINION=DUMP or NODUMP.

ATTACH 38 26 Not supported. See note 2.

DETACH 39 27 Not supported. See note 2.

POST 40 28 Used to post an ECB, IORB, TECB, or CCB. Byte
2, bit 0 of the specified control block are turned
'on' by DMSDOS.

Figure 27 (Part 3 of 9). SVC Support Routines and Their Operation

252 VM/SP eMS for System Programming

~)Q\JC)~8[)DullfJ VS)[,:~! ~J[j'\O~J~'~lu-u ~G
)

FunctionjlVIacl'o SVC. No. Support
Dec He:I

DEQ 41 29 No operation. Successful return code of 0 is
given in R15. See note 1.

ENQ 42 2A No operation. Successful return code of 0 is
given in R15. See note 1.

43 2B Reserved

UNIT CHECKS 44 2C Not supported. See note 2.

EMULATOR 45 2D Not supported. See note 2.
INTERF.

OLTEP 46 2E Not supported. See note 2.

WAITF 47 2F Not supported. See note 2.

CRT TRANS 48 30 Not supported. See note 2.

CHANNEL 49 31 Not supported. See note 2.
PROG.

LIOCS DIAG. 50 32 Issued by a logical IOCS routine when the LIOCS
is called to perform an operation that the LIOCS
was not generated to perform.

The error message "unsupported function in a
LIOCS routine" is issued, and the session is then
terminated.

RETURN 51 33 Not supported. See note 2.
HEADER

TTIMER 52 34 No operation. Successful return code of 0 is
given in R15. See note 1. RO is also cleared.

VTAM EXIT 53 35 Not supported. See note 2.

FREEREAL 54 36 Not supported. See note 2.

GETREAL 55 37 Not supported. See note 2.

POWER 56 38 Not supported. See note 2.

POWER 57 39 Not supported. See note 2.

SUPVR. INTERF. 58 3A Not supported. See note 2.

EOJINTERF. 59 3B Not supported. See note 2.

GETADR 60 3C Not supported. See note 2.

GETVIS 61 3D Used to obtain free storage for scratch use or for
obtaining an area where a relocatable program
may be loaded. The PAGE, POOL, and SVA
GETVIS options are ignored.

FREEVIS 62 3E Used to return the free storage obtained via an
earlier GETVIS call.

Figure 27 (Part 4 of 9). SVC Support Routines and Their Operation

Chapter 9. Developing VSE Programs under CMS 253

[]~\7G~(J)[j)D~u[~ V§~ r~~©[:1~~C1uuu6
r:::::=:_-______________ _ , _____________ .,_. __ ' ___ h_._.'.".'_' ,,, .• __ ,"'.,,., .. ".h ,J

Function/Macro sve. No. Support
Dec Hex

USE 63 3F The USE/RELEASE function has been replaced
by SVC 110 (LOCK/UNLOCK) for serially
controlling system resources. All SVC 63 and 64
requests are mapped into SVC 110 requests.
respectively. Return codes previously associated
with USE/RELEASE under CMS/DOS are
maintained.

RELEASE 64 40 Reference SVC 63.

CDLOAD 65 41 Used to load a relocatable VSAM phase into
storage, unless the program has already been
loaded.

RUNMODE 66 42 Used by a problem program to find out if the
program is running in real or virtual mode. The
caller's register 0 is zeroed to indicate that the
program is running in virtual mode.

PFIX 67 43 No operation. Successful return code of 0 is
given in R15. See note l.

PFREE 68 44 No operation. Successful return code of 0 is
given in R15. See note l.

REALAD 69 45 Not supported. See note 2.

VIRTAD 70 46 Not supported. See note 2.

SETPFA 71 47 No operation. Successful return code of 0 is
given in R15. See note l.

GETCBUF/ 72 48 Not supported. See note 2.
FREECBUF

SETAPP 73 49 Not supported. See note 2.

PAGE FIX 744A Not supported. See note 2.

SECTVAL 75 4B Used by I/O routines to obtain a sector number
for a 3330, 3330-11, 3340, or 3350 device.

SYSREC . 76 4C Not supported. See note 2 .

TRANSCCW 77 4D Not supported. See note 2.

CHAP 78 4E Not supported. See note 2.

SYNCH 79 4F Not supported. See note 2.

SETT 80 50 Not supported. See note 2.

TESTT 81 51 Not supported. See note 2.

LINKAGE 82 52 Not supported. See note 2.

ALLOCATE 83 53 Not supported. See note 2.

SET LIMIT 84 54 Not supported. See note 2.

Figure 27 (Part 5 of 9). SVC Support Routines and Their Operation

254 VM/SP eMS for System Programming

[1_)t.~J\'J!,;) U ()[() U U Ul!-J ~J~~)L~ ~J U'~)0J u'(] u{ilS
u '-~ \...

[.. ...:.-...:.--...:-~--.-.. -.~-...:.---...:.~----.. -...:...~...:.:...:-. ...:-.--....:.~-..•.. -:-~. -_._--_._ ... _ ... ------ "'-'-' --_ .. _-_ .. _-_._--_.- -.-.-------.--.- .. -------.-----~

Function/Macro SVC. No. Support
Dec He~.:

RELPAGE 85 55 Provides support for the RELP AG macro. At
entry register 1 points to a list of 8-byte storage
description area. Each entry contains the
beginning address and the length-1 of an area to
be released. A nonzero byte following an entry
indicates the end of the list. An area is released
only if it contains at least a full CP page (4K
bytes). Pages are released when the virtual
machine calls CP via DIAGNOSE code X'10'. On
return, R15 holds return code as follows:
R15 = 0 all areas have been released
R15 = 2 one or more negative area

lengths were specified
R15 = 4 one or more pages to be

released were outside the user
storage area

R15 = 16 at least one entry contains a
beginning address outside the
user storage area.

FCEPGOUT 86 56 No operation. Successful return code of 0 is
given in R15. See note 1.

PAGEIN 87 57 No operation. Successful return code of 0 is
given in R15. See note 1.

TPIN 88 58 Not supported. See note 2.

TPOUT 89 59 Not supported. See note 2.

PUTACCT 90 5A Not supported. See note 2.

POWER 91 5B Not supported. See note 2.

XECBTAB 92 5C Not supported. See note 2.

XPOST 93 5D Not supported. See note 2.

XWAIT 94 5E Not supported. See note 2.

AB EXIT 95 5F Exit from abnormal task termination routine and
continue the task.

TT EXIT 96 60 Not supported. See note 2.

TT STXIT 97 61 Not supported. See note 2.

EXTRACT 98 62 Support for EXTRACT macro of VSE. The caller
requests PUB information, CPUID, or storage
boundary information. Register 1 on entry points
to a parameter list. Output is placed in an area
provided by caller.

GETVCE 99 63 Caller requests device information about specific
DASD. 'Information is returned in an output area
pointed to from the parameter list. Register 1
contains a pointer to the parameter list on entry.

100 64 Reserved

Figure 27 (Part 6 of 9). SVC Support Routines and Their Operation

Chapter 9. Developing VSE Programs under CMS 255

L __ . ___ .. _. __ .. __ . __ . __ ... ___ ... _._._ .. _._. ___________ _ _. ______ . __ .. _____________ .. ____ ._._. __ ... __ _. __ .. __ .. __ --:J

Function/Macro SVC. No. Support
Dec Hmr

MODVCE 101 65 No operation. Successful return code of 0 is
given in R15. See note 1.

102 66 Reserved.

SYSFIL 103 67 Not supported. See note 2.

EXTENT 104 68 No operation. Successful return code of 0 is
given in R15. See note 1.

SUBSID 105 69 SUBSID .. the 'INQUIRY' function is supported
for the supervisor subsystem. Information
returned is described by the SUPSSID control

\ block. The SUBSID 'NOTIFY' and 'REMOVE'
functions are not supported.

LINKAGE 106 6A Not supported. See note 2.

Figure 27 (Part 7 of 9). sve Support Routines and Their Operation

256 VM/SP eMS for System Programming

[J8t7G~Ot)Uu-ilSJ ~~~[~ [Ju'QJtj[/cJU uarj
[==~===.~ .. _-. _ .. :.:.::=.:.::..======-:----------.-------------.. -- -------.--.-.-_.-.-- -.,---.. -.---.--,.,.-.,.-....... .- ... -... : . -. ~_ .. _ .. .:.::..~~==_.~_:..J

Function/IVlacro SVC. No. Support
Dec He:r

TASK INTERF. 107 6B Provides macro interface support for system
information retrieval. The parameters supported
are:

GETFLD:

field = ppsavar returns problem program save
area address.

=savar returns current save area
address.

=maintask returns maintask TID in Rl.

=aclose returns in R1: 1 if in process, 0
if not.

=pcexit returns the pcexit routine
address and save area in RO
and R1 respectively,. If the exit
routine is currently active, bit 0
in RO is set ON. If no exit is
defined, it returns a 0 in both
RO and Rl.

MODFLD:

field = vsamopen set bit X'08' in tcbflags byte if
R1-, =0

=aclose set bit X'10' in tcbflags byte if
R1-, =0

The MODFLD requests for fields CNCLALL and
OPENSV A are treated as a NOP with a return
code ofO.

All other SVC 107 macro calls are unsupported.
The error message DMSGMF121S is issued and
the request is cancelled. See note 2.

DATA SECURE 108 6C Not supported. See note 2.

PAGESTAT 109 6D Not supported. See note 2.

Figure 27 (Part 8 of 9). SVC Support Routines and Their Operation

Chapter 9. Developing VSE Programs under CMS 257

[i)Gt7G~(Q)fDDutifj VS~ r.uL'CJ)f~r8uuuO
[.. -.- =-.. =: .. =-.. ==.==-==:---:-::--":~=-:-:-=-:-~- --------,

.. "". __ _ __ _ __ _ _ _ .. _ _ .. "_."_. __ _ ... _ -1

Function/Macro SVC. No. Support
Dec Hmr:

LOCK/UNLOCK 110 6E Used by VSAM to control access to resources.
Access is maintained in either a 'shared' or
'exclusive' control environment. When DOS is
SET ON, counters are maintained as well as the
type of control for each resource in a table
(LOCKT AB) built in free storage. All entries not
unlocked by the program are cleared at both
normal and abnormal end-of-job.
All requests for resource control are passed to
SVC 110 through the DTL macro (define the
lock). SVC 63 requests are mapped into a dummy
DTL and processed by SVC 110.

Notes:

1. No operation:
In each case, register 15 is cleared to simulate
successful operation, and all other registers are
returned unchanged, unless otherwise noted.

2. Not supported:
For unsupported SVCs, an error message is
given, and the SVC is treated as a "cancel".

Figure 27 (Part 9 of 9). SVC Support Routines and Their Operation

Declarative Macros (Sequential Access Method I/O Macros)

CMS/DOS supports the following declarative macros:

• DTFCD - Types X'02' and X'04'
• DTFCN - Types X'03'
• DTFDI - Types X'33'
• DTFMT - Types X'10', X'll', X'12', and X'14'
• DTFPR - Types X'OS'
• DTFSD - Types X'20'

The CDMOD, DIMOD, MTMOD, and PRMOD macros generate the logical
rocs routines that correspond with the declarative macros. For files on
disk, the logical IOCS routines used during program execution reside in the
CMSBAM DCSS and are not generated within the program. The operands
that CMS/DOS supports for the DTF are also supported for the xxMOD
macro. In addition, CMS/DOS supports three internal macros that the
COBOL and PL/I compilers require: DTFCP (types X'31' and X'32'),
CPMOD, and DTFSL.

258 VM/SP eMS for System Programming

DTFCD Macro -- Defines the File for a Card Reader

Operand

DEV ADDR = SYSxxx

IOAREAl = xxxxxxxx

ASOCFLE = xxxxxxxx

BLKSIZE = nnn

CONTROL=YES

CRDERR=RETRY

CTLCHR=xxx

DEVICE=nnnn

EOF ADDR = xxxxxxxx

ERROPT = xxxxxx

FUNC=xxx

IOAREA2 = xxxxxxxx

IOREG=(nn)

MODE=xx

MODNAME = xxxxxxxx

OUBLKSZ=nn

RDONLY=YES

RECFORM = xxxxxx

RECSIZE = (nn)

SEPASMB = YES

SSELECT=n

CMS/DOS does not support the ASOCFLE, FUNC, TYPE FILE = CMBND,
and OUBLKSZ operands of the DTFCD macro. CMS/DOS ignores the
SSELECT operand and any mode other than MODE = E. Figure 28
describes the DTFCD macro operands and their support under CMS/DOS.
An asterisk (*) in the status column indicates that CMS/DOS support
differs from VSE support.

Status Description

Symbolic unit for reader-punch used for this file.

* N arne of the first I/O area.

* Not supported.

* Length of one I/O area, in bytes. If omitted, 80 is
assumed. If CTLCHR = YES is specified, BLKSIZE
defa ults to 8l.

CNTRL macro used for this file. Omit CTLCHR for this
file. Does not apply to 250l.

* Retry if punching error is detected. Applies to 2520 and
2540 only. However, this situation is never encountered
under CMS/DOS because hardware errors are not passed
to the LIOeS module.

(YES or ASA). Data records have control character.
YES for S/370 character set; ASA for American National
Standards Institute character set. Omit CONTROL for
this file.

* (2501, 2520, 2540, 3505, or 3525). If omitted, 2540 is
default.

Name of your end-of-file routine.

* IGNORE, SKIP, or name. Applies to 3505 and 3525 only.

* Not supported.

* If two output areas are used, name of second area.

Register number if two I/O areas are used and GET or
PUT does not specify a work area. Omit WORKA.

* Only MODE = E is supported.

Name of the logic module that is used with the DTF table
to process the file.

* Not supported.

* Causes a read-only module to be generated.

(FIXUNB, VARUNB, UNDEF). If omitted, FIXUNB is
default.

* Register number if RECFORM = UNDEF.

DTFCD is to be assembled separately.

* Ignored.

Figure 28 (Part 1 of 2). eMS/DOS Support of DTFCD Macro

Chapter 9. Developing VSE Programs under CMS 259

[i})G\7G~C})[J)UUUQJ ~f8[E l~u'(!)~~u'8uuuG
L~== _ . _______ _. __ .. __ . ___ . _. ____ __ .. _ ... _______ .. _ .. _._. ______ . ____ .. ___ ... _____ . _____ . ______ .. ___ ... ___ ._. __ .. _____ . ______ _. _______ ._. _____ .. ______ .. ___ .::: ___ . ________________ . _____ . _____ ~.

Operand Status Description
TYPEFLE= * Input or output.

WORKA=YES I/O records are processed in work areas instead of the
I/O areas.

Figure 28 (Part 2 of 2). CMS/DOS Support of DTFCD Macro

260 VM/SP eMS for System Programming

~--.-"-."- •.. " .. " .. " -. -' -' '---" ... _-----'---'-'" -' '---"----_ ... _---' -----_. _ .. ,,- --'----"-":-=.:'::=---===~---]

DTFCN Macro - Defines the File for a Console

Operand
DEV ADDR = SYSxxx

IOAREA1 = xxxxxxxx

BLKSIZE = nnn

r"

INPSIZE = nnn

MODNAME = xxxxxxxx

RECFORM = xxxxxx

RECSIZE = (nn)

TYPEFLE = xxxxxx

WORKA=YES

CMS/DOS supports all of the operands of the DTFCN macro. Figure 29
describes the operands of the DTFCN macro and their support under
CMS/DOS. The status column is blank because the CMS/DOS and VSE
support of DTFCN are the same.

Status Description
Symbolic unit for the console used for this file.

Name of I/O area.

Length in bytes of I/O area (for PUTR macro usage,
length of output part of I/O area). If
RECFORM = UNDEF, maximum is 256. If omitted, 80 is
default.

Length in bytes for input part of I/O area for PUTR
macro usage.

Logic module name for this DTF. If omitted, IOCS
generates a standard name.

The logic module is generated as part of the DTF.

(FIXUNB or UNDEF). If omitted, FIXUNB is default.

Register number if RECFORM = UNDEF. General
purpose registers 2 through 12, enclosed in parentheses.

(INPUT, OUTPUT, or CMBND). Input processes both
input and output. CMBND must be specified for PUTR
macro usage. If omitted, INPUT is default.

GET or PUT specifies work area.

Figure 29. CMS/DOS Support of DTFCN macro

DTFDI MACRO - Defines the File for Device Independence for System Logical Units

Operand
DEVADDR = SYSxxx

IOAREA1 = xxxxxxxx

CMS/DOS supports most operands of the DTFDI macro. Figure 30
describes the operands of the DTFDI macro and their support under
CMS/DOS. An asterisk (*) in the status column indicates that CMS/DOS
support differs from VSE support.

Status Description
(SYSIPT, SYSLST, SYSPCH, or SYSRDR). System
logical unit. CMS/DOS issues an error message if the
logical unit specified on the DTF does not match the
logical unit specified on the corresponding DLBL
command.

N arne of the first I/O area.

Figure 30 (Part 1 of 2). eMS/DOS Support of DTFDI Macro

Chapter 9. Developing VSE Programs under eMS 261

________________________ :J

Operand Status Description
CISIZE=n * This operand specifies the control interval size for a DOS

formatted FB-512 device assigned to a nonsystem file
logical unit. This operand is ignored for count-key-data
devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FBA=YES This operand is not required and is ignored if specified.

ERROPT = xxxxxxxx (IGNORE, SKIP, or name of your error routine).
Prevents termination on errors.

IOAREA2 = xxxxxxxx If two I/O areas are used, name of second area.
IOREG2 = (nn) Register number. If omitted and two I/O areas are used,

register 2 is default. General purpose registers 2 through
12, enclosed in parentheses.

MODNAME = xxxxxxxx DIMOD name for this DTF. If omitted, IOCS generates a
standard name. This operand is ignored with DASD.
The SAM OPEN routines within the CMSBAM DCSS
always load an IBM supplied logic module and link it to
the DTF.

RDONLY=YES Generates a read-only module. Requires a module save
area for each routine using the module.

RECSIZE = nnn Number of characters in record. Default values: 121
(SYSLST), 81 (SYSPCH), 80 (other).

SEPASMB = YES DTFDI to be assembled separately.

TRC=YES * Not supported.

WLRERR = xxxxxxxx Name of your wrong-length record routine.

Figure 30 (Part 2 of 2). CMS/DOS Support of DTFDI Macro

DTFMT Macro -- Defines the File for a Magnetic Tape

CMS/DOS does not support the ASCII, BUFOFF, HDRINFO, LENCHK, and
READ = BACK operands of the DTFMT macro. Tape I/O operations are
limited to reading in the forward direction.

You may use the FILABL operand in the DTFMT macro to specify that you
have a standard tape label file, a nonstandard tape label file, or an
unlabeled tape. The type of tape label processing depends on the option
selected. See "Tape Labels in CMS" in the VM/SP eMS User's Guide for a
complete description of tape label processing in CMS/DOS.

Figure 31 describes the DTFMT macro operands and their support under
CMS/DOS. An asterisk (*) in the status column indicates that eMS/DOS
support differs from VSE support.

262 VM/SP CMS for System Programming

c::-...... - .. -...... -.......... u. _·. __ u ___ ._ -----.-.-.--•••.• _u._ .-... :-.-.. -.~- .. ___ . _____ ... __ ._ ... _ .. _. __ .u_._ u - ..• -.- ••• - •• __ ••• _ ••. __ m_. __ ._ ••.••• _ •••• _U ••• U .••.•.• - •• u_ .--- ._ .. u ----- .. -- .:-':::':':'::::-=::J

Operand Status Description

BLKSIZE = nnnnn Length of one I/O area in bytes (maximum = 32,767.

DEV ADDR = SYSxxx Symbolic unit for tape drive used for this file.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FILABL = xxx x (NO, STD, or NSTD). If NSTD specified, include
LABADDR.

IOAREA1 = xxxxxxxx Name of first I/O area.

ASCII = YES * Not supported.

BUFOFF=nn * Not supported.

CKPTREC = YES Checkpoint records are interspersed with input data
records. IOCS bypasses checkpoint records.

ERREXT=YES Additional errors and ERET are desired.

ERROPT = xxxxxxxx (IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.

HDRINFO = YES * Not supported.

IOAREA2 = xxxxxxxx If two I/O areas are used, the name of the second area~

IOREG=(nn) Register number. Use only if GET or PUT does not
specify a work area or if two 1/0 areas are used. Omit
WORKA. General purpose registers 2 through 12,
enclosed in parentheses.

LABADDR = xxxxxxxx Name of your label routine if FILABL = NSTD or if
FILABL = STD and user-standard labels are processed.

LENCHK=YES * Not supported.

MODNAME = xxxxxxxx Name of MTMOD logic module for this DTF. If omitted,
IOCS generates standard name.

NOTEPNT = xxxxxx (YES or POINTS). YES if NOTE, POINTW, POINTR, or
POINTS macro is used. POINTS if only POINTS macro
is used.

RDONLY=YES Generate read-only module. Requires a module save area
for each routine using the module.

READ = xxxxxxx * CMS/DOS only supports READ = FORWARD.

RECFORM = xxxxxx (FIXUNB, FIXBLK, V ARUNB, V ARBLK, SPNUNB,
SPNBLK, or UNDEF). For work files use FIXUNB or
UNDEF. If omitted, FIXUNB is assumed.

RECSIZE = nnnn If RECFORM = FIXBLK, number of characters in the
record. If RECFORM = UNDEF, register number. Not
required for other records. General purpose registers 2
through 12, enclosed in parentheses.

REWIND = xxxxxx (UNLOAD or NORWD). Unload on CLOSE or
end-of-volume, or prevent rewinding. If omitted, rewind
only.

SEPASMB = YES DTFMT is to be assembled separately.

Figure 31 (Part 1 of 2). eMS/DOS Support of DTFMT Macro

Chapter 9. Developing VSE Programs under CMS 263

___ ____ ._._. ___ ._.._. ._. __ .. ,_ __ _. _______ . __ . __ . ____ . _________________ -=====::-==--==-..:..-=-.::::=--=_=-__ -:::.:=~~:=~=:= __ ==:.::J

Operand Status Description
TPMARK=NO Prevent writing a tapemark ahead of data records if

FILABL= NSTD or NO.

TYPEFLE = xxx xxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is
default.

V ARBLD = (nn) Register number, if RECFORM = V ARBLK and records
are built in the output area. General purpose registers 2
through 12 are enclosed in parentheses.

WLRERR = xxxxxxxx Name of wrong-length record routine.

WORKA=YES GET or PUT specifies a work area. Omit IOREG.

Figure 31 (Part 2 of 2). eMS/DOS Support of DTFMT Macro

DTFPR Macro - Defines the File for a Printer

Operand
DEV ADDR = SYSxxx

IOAREA1 = xxxxxxxx

ASOCFLE = xxxxxxxx

BLKSIZE = nnn

CONTROL = YES

CTLCHR=xxx

DEVICE=nnnn

ERROPT = xxxxxxxx

FUNC=xxxx

IOAREA2 = xxxxxxxx

IOREG=(nn)

MODNAME = xxxxxxxx

PRINTOV = YES

CMS/DOS does not support the ASOCFLE, ERROPT = IGNORE, and FUNC
operands of the DTFPR macro. Figure 32 describes the operands of the
DTFPR macro and their support under CMS/DOS. An asterisk (*) in the
status column indicates that CMS/DOS. support differs from VSE support.

Status Description
Symbolic unit for the printer used for this file.

Name for the first output area.

* Not supported.

* Length of one output area, in bytes. If omitted, 121 is
default.

CNTRL macro used for this file. Omit CTLCHR for this
file.

(YES or ASA). Data records have control character.
YES for S/370 character set; ASA for American National
Standards Institute character set. Omit CONTROL for
this file.

* (1403, 1443, 3203, or 3211). If omitted, 1403 is default.

* RETRY or the name of your error routine for 3211. Not
allowed for other devices. IGNORE is not supported.

* Not supported.

If two output areas are used, name of second area.

Register number; if two output areas used and GET or
PUT does not specify a work area. Omit WORKA.

Name of PRMOD logic module for this DTF. If omitted,
IOCS generates standard name.

PRTOV macro used for this file.

Figure 32 (Part 1 of 2). eMS/DOS Support of DTFPR Macro

264 VM/SP eMS for System Programming

,/

[iJGuG~opnul1[.J us~ ~JU'cG~JG·C)U .. {US
[..... --===:.:~==-.--:----.. ----.-...... -................ ---------. -_ .. -- - - - -... - . -- --.-----------_ .. - ----]

Operand Status Description

RDONLY=YES Generate a read-only module. Requires a module save
area for each routine using the module.

RECFORM = xxxxxx (FIXUNB, V ARUNB, or UNDEF). If omitted, FIXUNB is
default.

RECSIZE = (nn) Register number if RECFORM = UNDEF.

SEP ASMB = YES DTFPR is to be assembled separately.

STLIST=YES Use 1403 selective tape listing feature.

TRC=YES * Not supported ..

UCS=xxx (ON) process data checks. (OFF) ignores data checks.
Only for printers with the UCS feature or 3203 or 3211.
If omitted, OFF is default.

WORKA=YES PUT specifies work area. Omit IOREG.

Figure 32 (Part 2 of 2). eMS/DOS Support of DTFPR Macro

DTFSD Macro - Defines the File for a Sequential DASD

Operand

BLKSIZE = nnnn

CISIZE=n

EOFADDR= xxxxxxxx

IOAREA1 = xxxxxxxx

CONTROL = YES

DELETFL=NO

CMS/DOS does not support the FEOVD, HOLD, and LABADDR operands of
the DTFSD macro. Figure 33 describes the operands of the DTFSD macro
and their support under eMS/DOS. An asterisk (*) in the status column
indicates that CMS/DOS support differs from VSE support.

Status Description

Length of one I/O area, in bytes.

* This operand specifies the control interval size for a DOS
formatted FB-512 device assigned to a nonsystem file
logical unit. This operand is ignored for count-key-data
devices and CMS formatted disks.

Name of your end-of-file routine.

Name of first I/O area.

This operand is ignored. CONTROL = YES is always
included.

* If DELETFL = NO is specified, the work file is not
erased. Otherwise, when the work file is closed,
CMS/DOS erases it.

Figure 33 (Part 1 of 3). eMS/DOS Support of DTFSD Macro

Chapter 9. Developing VSE Programs under CMS 265

Operand Status Description

DEVADDR= SYSnnn * Symbolic unit. This operand is optional. If DEV ADDR is
not specified, all I/O requests are directed to the logical
unit identified on the corresponding CMS/DOS DLBL
command.

If a valid logical unit is specified with the DEV ADDR
operand of the DTF and a different, but also valid,
logical unit is specified on the DLBL command, the unit
specified on the DLBL command overrides the unit
specified in the DTF. However, CMS/DOS issues an error
message if a valid logical unit is specified in the DTF and
no logical unit is specified on the corresponding DLBL
command.

DEVICE=nnnn * This operand is ignored. The actual device type is
determined by OPEN.

ERREXT=YES Additional error facilities and ERET are desired. This
operand is ignored. ERREXT = YES is always included.

ERROPT = xxxxxxxx (IGNORE, SKIP, or name of error routine.) Prevents job
termination on error records. Do not use SKIP for
output files.

FEOVD=YES * Not supported.

HOLD=YES * Not supported. HOLD = YES is specified for DTFSD
update or work files to provide a track hold capability.
However, the CMS/DOS open routine sets the track hold
bit off and bypasses track hold processing.

IOAREA2 = xxxxxxxx If two I/O areas are used, name of second area.

IOREG=(nn) Register number. Use only if GET or PUT does not
specify work area or if two I/O areas are used. Omit
WORKA.

LABADDR = xxxxxxxx * Not supported.

MODNAME = xxxxxxxx This operand is not required. If specified, it is ignored.
The SAM OPEN routines within the CMSBAM DCSS
always load an IBM supplied logic module and link it to
the DTF.

NOTEPNT = xxxxxxxx Indicates that NOTE, POINTR, POINTW, and POINTS
are used. This operand is ignored. NOTEPNT = YES is
always included.

RDONLY=YES This operand is not required and is ignored if specified.
RDONL Y = YES is always included.

PWRITE=YES * For a DOS formatted FB-512 disk, this operand specifies
that for output operations a physical write occurs for
every logical block. This operand is ignored for
count-key-data devices and CMS formatted disks. DOS
formatted FB-512 disks are not supported for output.

Figure 33 (Part 2 of 3). eMS/DOS Support of DTFSD Macro

266 VM/SP eMS for System Programming

[Q)euG~<orj~U'a@ V8~ ~)rr«J)~rrcwuuo
c-----------·----_------------ ---------------=------_._-- -)

Operand Status Description

RECFORM = xxxxxx (FIXUNB, FIXBLK, VARUNB, SPNUNB, SPNBLK,
VARBLK, or UNDEF). If omitted, FIXUNB is assumed.

For work files, use FIXUNB or UNDEF. Although work
files contain fixed-length unblocked records, the CMS
file system handles work UNDEF files as variable-length
record files. If you specify FIXBLK, V ARBLK, or
UNDEF when creating a CMS file on a CMS disk, CMS
writes the file in variable-length format. The LIST FILE
command would show the file as V format. If you specify
FIXUNB when creating a CMS file on a CMS disk, CMS
writes the file in fixed-length format.

RECSIZE = nnnnn If RECFORM = FIXBLK, number of characters in record.
IfRECFORM=SPNUNB, SPNBLK, or UNDEF, register
number. Not required for other records.

SEPASMB = YES DTFSD is to be assembled separately.

TRUNCS=YES RECFORM = FIXBLK or TRUNC macro used for this
file.

TYPEFLE = xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is
assumed.

UPDATE=YES Input file or work file is to be updated.

V ARBLD = (nn) Register number if RECFORM = V ARBLK and records
are built in the output area. Omit if WORKA = YES.

VERIFY = YES Check disk records after they are written.

WLRERR = xxxxxxxx Name of your wrong-length record routine.

WORKA=YES GET or PUT specifies work area. Omit IOREG.
Required for RECFORM = SPNUNB or SPNBLK.

Figure 33 (Part 3 of 3). eMS/DOS Support of DTFSD Macro

Imperative Macros (Sequential Access Method 1/0 Macros)

CMS/DOS supports the following imperative macros:

o Initialization macros: OPEN and OPENR

o Processing macros: GET, PUT, PUTR, RELSE, TRUNC, CNTRL, ERET,
and PRTOV.

Note: No code is generated for the CHNG macro.

• Work file macros for tape and disk: READ, WRITE, CHECK, NOTE,
POINTR, POINTW, and POINTS.

• Completion macros: CLOSE and CLOSER.

CMS/DOS supports workfiles containing fixed-length unblocked records and
undefined records. Disk work files are supported as single volume, single
pack files. Normal extents and split extents are both supported.

Chapter 9. Developing VSE Programs under CMS 267

L_ .. __ __ . ___ _ .. _._._. __ _ ... ___ . _____ ._. ___ .. _. _________ . ______ . _______ :::J

VSE Transient Routines

CMS/DOS simulates the VSE transients that are fetched by macro
expansion or by the LIOCS modules. These simulation routines contain
enough of the transient's function to support the DOS/VSE COBOL
compiler and DOS PL/I Optimizing compiler.

The following VSE transients are simulated by CMS/DOS.

$$BOPEN Fetched by the VSE OPEN macro expansion or by the VSE
LIOCS modules. $$BOPEN performs DTF initialization,
dependent upon the device type, to ready the file for I/O
operations. At entry to $$BOPEN, register 0 points to a list
of fullword addresses containing a pointer to the DTFs.
$$BOPEN checks for su·pported· DTF types, and initializes
DTFs in accordance with the device type. In the case of tape
data files, default DLBLs with the NOCHANGE option are
issued. (The CMS STATE command is issued to verify the
existence of the input files on disk.)

If a VSAM file is being opened (Byte 20 = X'28' in the ACB),
control is passed to the VSAM OPEN routine. When
opening DTFSD files for output or DTFCP/DTFDI disk files
for output, if a file exists on a CMS disk with the same
filename, filetype, and filemode, the file is erased. If a SAM
disk file is being opened, DTF initialization is performed by
involving the simulated VSE OPEN routines that reside in
the CMSBAM DCSS.

$$BOPNLB Fetched by COBOL Compiler Phase 00 to read the
appropriate system or private source statement library
directory record and to determine whether or not active
members are present for the library.

$$BCLOSE Fetched by VSE CLOSE macro expansion to deactivate a
file.

$$BDUMP Fetched when an abnormal termination condition is
encountered. Control is not passed to a STXIT routine.
CMS/DOS performs a CP dump to a virtual printer. The
routine is canceled.

$$BOPENR Fetched by a VSE OPENR macro expansion. The function of
$$BOPENR is to relocate all DTF table address constants
from the assembled addresses to executable storage

$$BOPNR3

addresses. At entry to $$BOPENR, register 0 points to an
assembled address constant followed by a list of DTF
addresses tables that require address modification.

Fetched by $$BOPENR to relocate all DTF table address
constants for unit record DTFs.

268 VM/SP eMS for System Programming

/

--.. .-- ---.--- .---.----- -- -.-... ------ .. ------ -- -__ .. _._ ... -_. __ .. ___ . ___ , .. _._ -___ ._. __ _ -.. ' __ . ___ ._._ .. ____ . __ .. _ ... __ ._ ... _____ . ____ .. _________ . ·---_0·--·--···_·-·_--·_--_ .. _______ ._ .. __ ..]

$$BOPNR2

$$BOSVLT

EXCP Support in CMS/DOS

Fetched by $$BOPNR3 to relocate all DTF table address
constants for DTFDI or DTFCP.

Fetched via SVC 2 by the simulated VSE OPEN/CLOSE
routines in the CMSBAM DCSS. $$BOSVLT performs
clean-up and transition functions when processing by the
simulated VSE routines in the CMSBAM DCSS is complete.

CMS/DOS simulates the EXCP (execute channel program) routines to the
extent necessary to support the LIOCS routines described in the preceding
section, "VSE Supervisor and I/O Macros Supported by CMS/DOS."

Because CMS/DOS uses the VSE LIOCS routines, it must simulate all I/O
at the EXCP level. The EXCP simulation routines convert all the I/O in
the CCW format to CMS physical I/O requests. That is, CMS macros (such
as RDBUF/WRBUF, CARDRD/CARDPH, PRINTIO, and WAITRD/TYPLIN)
replace the CCW strings. If CMS/DOS is reading from DOS disks, I/O
requests are handled via the DIAGNOSE interface.

When an I/O operation completes, CMS/DOS posts the CCB or IORB with
the CMS return code. Partial RPS (rotational position sensing) support is
available for I/O operations to CMS disks because CMS uses RPS in its
channel programs. However, RPS is not supported when real DOS disks are
read.

VSE Super"isor Con~rol Bloc~(s Simulaied by CMS/DOS

CMS/DOS supports VSE program development and execution for a single
partition: the background partition. Because CMS/DOS does not support
foreground partitions, it also does not simulate the associated control
blocks and fields for foreground partitions. CMS/DOS does simulate the
following VSE supervisor control blocks:

o ABT AB -- Abnormal Termination Option Table
o BBOX -- Boundary Box
o BGCOM -- Background Partition Communication Region
o EXCPW -- Work area for module DMSXCP
o FICL -- First in Class
o LUB -- Logical Unit Block
o NICL -- Next in Class
o PCT AB -- Program Check Option Table
o PIBTAB -- Program Information Table
o PIB2T AB -- Program Information Block Table Extension
o PUB -- Physical U ni t Block
o PUBOWNER -- Physical Unit Block Ownership Table
o SYSCOM -- System Communication Region
o TCB -- Task Control Block

Chapter 9. Developing VSE Programs under CMS 269

• LOCT AB -- LOCK/UNLOCK Resource Table
• DIB -- Disk Information Block.

For detailed descriptions of CMS/DOS control blocks, refer to the VM/ SP
Data Areas and Control Block Logic Volume 2 (CMS).

eMS/DOS User Considerations and Responsibilities

A critical design assumption of CMS/DOS is that installations that use
CMS/DOS for VSE program development also use and have available a VSE
system.

You should consider several factors if you plan to use CMS/DOS. The
following sections describe some of the user considerations and
responsibilities.

VSE System Generation and Updating Considerations

The CMS/DOS support in CMS may use a real VSE system pack.
CMS/DOS provides the necessary path and then fetches VSE logical
transients B.nd system routines directly as well as the DOS/VS COBOL and
DOS PL/I Optimizing compilers from the VSE system or private core image
libraries.

It is your responsibility to order a VSE system and then generate it. Also,
if you plan to use DOS compilers, you must order the current level of the
DOS/VS COBOL compiler and DOS PL/I Optimizing compiler and you must
install them on the same VSE system.

When you install the compilers on the VSE system, you must link-edit all
the compiler modules as relocatable phases using the following linkage
editor control statement:

ACTION REL

You can place the link-edited phases in either the system or the private
core image library.

When you later invoke the compilers from CMS/DOS, the library (system or
private) containing the compiler phases must be identified to CMS. You
identify all the system libraries to CMS by coding the filemode letter that
corresponds to that VSE system disk on the SET DOS ON command when
you invoke the CMS/DOS environment. You identify a private library by
coding ASSGN and DLBL commands that describe it. The VSE system and
private disks must be linked to your virtual machine and accessed before
you issue the commands to identify them for CMS.

eMS/DOS has no effect on the update procedures for VSE, COBOL, or DOS
PL/I. Normal update procedures for applying IBM-distributed coding
changes apply.

270 VMjSP eMS for System Programming

-----.-----------:1

For detailed information on how to generate VM/SP with CMS/DOS, refer
to the publication VM/ SP Planning Guide and Reference and the VM/ SP
Installation Guide.

VM/SP Directory Entries

The VSE system and private libraries are accessed in read-only mode under
CMS/DOS. If more than one CMS virtual machine is using the CMS/DOS
environments you should update the VM/SP directory entries so that the
VSE system residence volume and the VSE private libraries are shared by
all the CMS/DOS users.

The VM/SP directory entry for one of the CMS virtual machines should
contain the MDISK statements defining the VSE volumes. The VM/SP
directory entries for the other CMS/DOS users should contain LINK
statements.

For example,assume the VSE system libraries are on cylinders 0 through
149 of a 3330 volume labeled DOSRES. And, assume the VSE private
libraries are on cylinders 0 through 99 of a 2314 volume labeled DOSPRI.
Then, one CMS machine (for example, DOSUSER1) would have the MDISK
statements in its directory entry.

USER DOSUSER1 password 320K 2M G

MDISK 331 3330 0 150 DOSRES R rpass
MDISK 231 2314 0 100 DOSPRI R rpass

All the other CMS/DOS users would have links to these disks. For example

LINK DOSUSER1 331 331 R
LINK DOSUSER1 231 231 R

When the VSE System Must be Online

Most of what you do in the CMS/DOS environment for VSE program
development requires that the VSE system pack and/or the VSE private
libraries be available to CMS/DOS. In general, you need these VSE
volumes whenever:

o You use the DOS/VS COBOL compiler or DOS/PLI Optimizing compiler.
The compilers are executed from the system or private core image
libraries.

o Your source programs contain COPY, LIBRARY, %INCLUDE, or CBL
statements. These statements copy books from your system or from the
private squrce statement library. '

o You invoke one of the library programs: DSERV, RSERV, SSERV,
PSERV, or ESERV.

Chapter 9. Developing VSE Programs under CMS 271

Performance

• You execute VSE programs that use LIOCS modules. CMS/DOS fetches
most of the LIOCS routines for non-disk files directly from VSE system
or private libraries.

A VSE system pack is usable when it is:

• Defined for your virtual machine
• Accessed
• Specified, by mode letter, on the SET DOS ON command.

A VSE private library is usable when it is:

c Defined for your virtual machine
• Accessed
o Identified via ASSGN and DLBL commands.

Although you can use the CMS/DOS library services to place the DOS/VS
COBOL compiler, DOS PL/I compiler, and ESERV program in a CMS
DOSLIB, it is recommended that you do not use this method with 800-byte
format CMS disks. CMS/DOS can fetch these directly from the VSE system
or private libraries faster than from a DOSLIB on 800-byte format CMS
disks. Fetch time from DOSLIBs on 512, 1K-, 2K-, or 4K-byte format CMS
disks is approximately equivalent to that of VSE system or private libraries.

Execution Considerations and Restrictions

The CMS/DOS environment does not support the execution of VSE
programs that use:

o Teleprocessing or indexed sequential (ISAM) access methods.
CMS/DOS supports only the sequential (SAM) and virtual storage
(VSAM) access methods.

o Multi-tasking. CMS/DOS supports only a single partition, the
background partition.

CMS/DOS can be executed in a CMS Batch Facility virtual machine. If
any of the VSE programs that are executed in the batch machine read data
from the card reader, you must ensure that the end-of-data indication is
recognized. Be sure that (1) the program checks for end of data and (2) a /*
record follows the last data record.

If there is an error in the way you handle end of data, the VSE program
could read the entire batch input stream as its own data. The result is that
jobs sent to the batch machine are never executed and the VSE program
reads records that are not part of its input file.

272 VM/SP eMS for System Programming

1--·-··-· .. -·--··--·-.. - .. - .. ----- --.. -.. --· .. -· _.- -........ -- -.. .-......... -.. ---... --... -....... ---.... ----.-..... ---.................... -.----------------.-.... ---.--.... -.-..... ----... -------

(('1 n·~'?i(~1r 11(0) (U'::-tfri" (~I I.',\c·{cf:"'~ IWiK:.i H (o(~ I (::{:",r,yt(c(:...~. ;:'''r1(~ I \Y.~i',~"~Yil I ~ 'n(~r:-n (cr~vi~1

~n~' (fr~Yj~/~Q~)

This section describes how you can use CMS to create and manipulate
VSAM catalogs, data spaces, and files on as and DOS disks using access
method services. The CMS support is based on VSE and VSE/VSAM. This
means that if you are an as VSAM user and plan to use CMS to
manipulate VSAM files, you are allowed to use those functions of access
method services that are available under the access method services portion
of VSE/VSAM. The control statements you can use are described in the
publication Using VSE/ VSAM Commands and Macros.

You can use CMS to:

o Execute the access method services utility programs for VSAM and
SAM data sets on as and DOS disks and minidisks. CMS can both read
and write VSAM files using access method services.

o Compile and execute programs that read and write VSAM files from
VSE programs.

o Compile and execute programs that read and write VSAM files from as
programs.

VSAM files written by CMS are written using VSE/VSAM. Certain files
written under CMS cannot be used directly by OS/VS VSAM. For
information relative to compatibility between VSE/VSAM and OS/VS
VSAM files, you should refer to the VSE/ VSAM General Information
Manual. The CMS commands normally used to manipulate CMS files are
not applicable to VSAM files, however. This includes such commands as
PRINT, TYPE, EDIT, COPYFILE, and so on.

Under CMS, VSAM data sets can span up to 10 volumes. CMS does not
support VSAM data set sharing. However, CMS already supports the
sharing of minidisks or full pack mini disks.

VSAM data sets created by CMS are not in the CMS file format. Therefore,
CMS commands currently used to manipulate CMS files cannot be used for
VSAM data sets read or written by CMS. A VSAM data set created by
CMS (using VSE/VSAM) has a file format compatible with as VSAM data
sets as long as the physical record size of the data set is .5K, 1K, 2K, or 4K.
For complete information on OS/VS VSAM and VSE/VSAM data set
compatibility, see the VSE/ VSAM General Information Manual.

Because VSAM data sets in CMS are not a part of the CMS file system,
CMS file size, record length, and minidisk size restrictions do not apply.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 273

lUJGDn'ilf~ AMs)[:~V @D'U©1 V~b\M
c-_-___ , , ___ :==J

The VSAM data sets are manipulated with Access Method Services
programs executed under CMS, instead of with the CMS file system
commands. Also, all VSAM minidisks and full packs used in CMS must be
initialized with the Device Support Facility; the CMS FORMAT command
can not be used.

eMS supports VSAM control blocks with the GENCB, MODCB, TESTCB,
and SHOWCB macros.

This section provides information on using the CMS AMSERV command.
The CMS AMSERV command allows you to execute access method services.
Information is provided on using VSAM macros in CMS. The discussion is
divided as follows:

• "Using the AMSERV command" contains general information.

• "Manipulating OS and DOS Disks for Use With AMSERV" describes
how to use CMS commands with OS and DOS disks.

o "Defining DOS Input and Output Files" is for CMS/DOS users only.

• "Defining OS Input and Output Files" is for OS users only.

• "Using AMSERV Under CMS" includes notes and examples showing
how to perform various access method services functions in CMS.

e "VSE/VSAM Macros" describes the macros and their support in CMS.

o "OS/VSAM Macros" describes the OSVSAM MACLIB supplied with
CMS.

• "Hardware Devices Supported" describes the disks supported by VSE
that VSAM data sets in CMS can use.

Executing VSAM Programs Under eMS

The commands that are used to define input and output data sets for Access
Method Services (DLBL) and for CMS/DOS users (ASSGN) are also used to
identify VSAM input and output files for program execution. Information
on executing programs under CMS that manipulate VSAM files is
contained in the licensed program documentation for the language
processors. These publications are listed in the VM/ SP Introduction.

Restrictions on the use of access method services and VSAM under CMS
for OS and DOS users are listed in the VM/ SP CMS Command Reference.
The VM/ SP CMS Command Reference also contains complete CMS and
CMS/DOS command formats, operand descriptions, and responses for each
of the commands described here.

274 VM/SP eMS for System Programming

t---·-

When you are going to execute VSAM programs in CMS or CMS/DOS, you
should remember to issue the DLBL commands to identify the master
catalog and any other program input or output files you need to define.

Since VSE/VSAM Release 2, VSE/VSAM has reduced its dependency on
explicit ASSGN, EXTENT, and DLBL information. In many cases, you no
longer need to specify this information. Identification of the master catalog
within CMS, however, still requires ASSGN and DLBL commands. For
complete information concerning the ASSGN, DLBL, and EXTENT
requirements, refer to the VSE/ VSAM Programmer's Reference.

Note: For ASSGN, EXTENT, and DLBL requirements for multivolume
files, refer to "Defining DOS Input and Output Files" on page 284
and"Identifying Existing Multivolume Files" on page 292.

In the discussion that follows, ASSGN, DLBL, and EXTENT information is
included even though it may not be required.

Opening an ACB with a MACRF = ADR and subsequently issuing a GET or
a PUT with KEYED ACCESS specified in the RPL when SHARE OPTION
(4) is specified is not allowed in VSE/VSAM Release 2. Likewise, opening
an ACB with KEYED ACCESS and subsequently issuing a GET or a PUT
with MACRF = ADR specified in the RPL when SHAREOPTION (4) is
specified is not allowed. Please refer to Using VSE/ VSAM Commands and
Macros for more information.

VSE/VSAM supports the functions that were previously supported as well
as the following enhancements:

o Volume ownership is enhanced so that multiple catalogs may own space
in the same DASD volume if only one recoverable catalog owns space
on the volume and only if one catalog resides on the volume.

o You can verify the syntax of the AMS commands without actually
executing them by using the SYNCHK parameter of the AMS P ARM
command.

o Using the IGNORE ERROR parameter of the AMS DELETE command,
you can delete incomplete catalog information that may have resulted
from a system failure during DEFINE or DELETE processing. When
you specify the IGNORE ERROR parameter of the AMS DELETE
command, the PRINT option must be used on the CMS AMSERV
command to send the listing to the virtual printer.

o By issuing the CMS CATCHECK command, a CMS VSAM user (with or
without DOS set ON) may invoke the VSE/VSAM Catalog Check
Service Aid to verify a complete catalog structure.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 275

___________________ . __ . _____ . _____ . ______ . .._ _ __ ____ .. ___ . ____ . _ _ .. ____ ._._. ___ .::::--====-=======:.-J

The AMSERV Command

In CMS, you execute access method services utility programs with the
AMSERV command. The basic format is:

amserv filename

filename is the name of a CMS file containing the control statements for
access method services.

Note: Throughout the remainder of this section the term "AMSERV" is
used to refer to both the CMS AMSERV command and the OS/VS or
VSE/VSAM access method services, except where a distinction is being
made between CMS and access method services.

You create an AMSERV file with the CMS editor using a filetype of
AMSERV and any filename you want. For example:

xedit mastcat amserv

The editor recognizes the filetype of AMSERV and so automatically sets the
zone for your input lines at columns 2 and 72. The sample AMSERV file
being created in the example above, MASTCAT AMSERV, might contain
the following control statements:

DEFINE MASTERCATALOG (NAME (MYCAT) -
VOLUME (123456) CYL(2) -
FILE (IJSYSCT))

Note: The syntax of the control statements must conform to the rules for
access method services, including continuation characters and parentheses.
The only difference is that the AMSERV file does not contain a "/*" for a
termination indicator.

Before you can execute the DEFINE control statement in this AMSERV
example, you must define the output file, using the ddname IJSYSCT. You
can do this using the DLBL command, if required by VSE/VSAM. Since the
exact form required in the DLBL command varies according to whether you
are an OS or a DOS user, separate discussions of the DLBL command are
provided later in this section. All of the following examples assume that
any disk data set or file that you are referencing with an AMSERV
command was defined by a DLBL command, if required by VSE/VSAM.

When you execute the AMSERV command, the AMSERV control statement
file can be on any accessed CMS disk. You do not need to specify the
filemode. If you are a DOS user, you do not need to assign SYSIPT. The
task of locating the file and passing it to access method services is
performed by CMS.

276 VM/SP eMS for System Programming

/'

l!JouuuCJ {\L'JJs)L~~~rur Ouu(] V8L~\~'JJ
c---------------·---·----=--.. ------------·---------... -----.--- .. ----- -.--... -------.. - .. -- .---.... --.... -.. -- ... ---.. ------.. ----:::.------.--------------... ----.---------------]

AMSERV Output Listings

When the AMSERV command is finished processing, you receive the CMS
. ready message. If there was an error, the return code (from register 15) is
displayed following the "Ready". For example:

Ready(00008) ;

If you are receiving the long form of the ready message, it appears:

Ready(00008); T=0.01/0.11 10:50:23

If you receive a ready message with an error return code, you should
examine the output listing from AMSERV to determine the cause of the
error.

AMSERV output listings are written in CMS files with a filetype of
LISTING. By default, the filename is the same as that of the input
AMSERV file. For example, if you have executed:

amserv masteat

and the CMS ready message indicates an error return code, you should
examine the file MAST CAT LISTING. Edit the file MASTCAT LISTING
and issue the following LOCATE subcommand twice:

locate fide

to find the character string IDC will position you in the LISTING file at the
first access method services message.

The publication VSE/ VSAM Messages and Codes lists and explains all of
the messages generated by access method services together with the
associated return and reason codes.

If you need to make changes to control statements before executing the
AMSERV command again, use the CMS editor to modify the AMSERV
input file.

If you execute the same AMSERV file a number of times, each execution
results in a new LISTING file that replaces any previous listing file with
the same filename.

Controlling AMSERV Command Listings

When you use AMSERV to print a VSAM file or to list catalog or recovery
area contents using the PRINT, LISTCAT, or LISTCRA control statements,
the output is written in a listing file on a CMS read/write disk.

If you only want a printed copy of the output listing, issue the AMSERV
command with the PRINT option. For example,

amserv myfile (print

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 277

______ . _________________ ==::J

You might want to use this option if you are executing a PRINT or
LISTCAT control statement and expect a very large output listing that you
know cannot be contained on any of your disks.

If you want to save the output listing on disk and also print a copy, issue
the AMSERV command without the PRINT option, and then use the CMS
PRINT command to print the LISTING file.

If you issue the AMSERV command with no options, you get a CMS file
with a filetype of LISTING and a filename equal to that of the AMSERV
input file. This LISTING file is usually written on your A-disk, but if your
A-disk is full or not accessed, it is written on any other read/write CMS
disk you have accessed.

If there is not enough room on your A-disk or any other disk, the AMSERV
command issues an error message saying that it cannot write the LISTING
file. If this happens, the LISTING file created may be incomplete and you
may not be able to tell whether or not access method services actually
completed successfully. In this case, after you have cleared some space on
a read/write disk, you may have to execute an AMSERV PRINT or
LISTCAT function to verify the completion of the prior job.

LISTING files take up considerable disk space, so you should· erase them as
soon as you no longer need them.

Controlling the Filename of the Output listing

You can also control the filename of the output listing file by specifying a
second name on the AMSERV command line. For example,

amserv myfile myfilel

In this example, the input file is MYFILE AMSERV and the output listing
is placed in a file named MYFILEI LISTING. A subsequent execution of
this same AMSERV file:

amserv myfile myfile2

creates a second listing file, MYFILE2 LISTING, so that the listing created
from the first execution is not erased.

Manipulating OS and DOS Disks for Use with AMSERV

To use CMS VSAM and AMSERV, you can have OS or DOS disks in your
virtual machine configuration. They can be assigned in your directory
entry, or you can link to them using the CP LINK command. You must
have read/write access to them in order to execute any AMSERV function
or VSAM program that requires opening the file for output or update.

Before you can use an OS or DOS disk, you must access it with the CMS
ACCESS command:

278 VM/SP eMS for System Programming

access 200 d

The response from the ACCESS command indicates that the disk is in OS or
DOS format:

D (200) R/W - as
-- or --

D (200) R/W - DOS

You can write on these disks only through AMSERV or through the
execution of a program writing VSAM data sets. Once an OS disk is used
with AMSERV or VSAM, CMS considers it a DOS disk. Therefore,
regardless of whether you are an OS user, when you access or request
information about a VSAM disk, CMS indicates that it is a DOS disk. You
can still use the disk in an OS or DOS system for VSAM data set
processing. Although the format is not changed, the disk is still subject to
any incompatibilities that can currently exist between OS and DOS disks.

Data and Master Catalog Sharing

There are two meanings of "sharing" that must be defined clearly with
respect to the CMS support of VSAM. The first is that of the
SHARE OPTION parameter found in the DEFINE (and ALTER) command
for access method services.

The SHARE OPTION keyword enables the VSAM user to define how a
component is shared within or across VSE partitions and VSE systems.
Since CMS supports only a single partition environment, cross partition
sharing has no meaning in the CMS environment. In addition, since CMS
does not provide DASD sharing support, cross system sharing is not
supported. Consequently, the SHAREOPTION parameter only has meaning
within a CMS virtual machine (functional equivalent of a VSE partition).

The area of sharing most familiar to CMS users is that of disk (minidisk)
read-sharing provided by CPo For the VSAM user under CMS, it is still
possible to share disks in read-only mode in order to read-share VSAM
components. However, there is a restriction with respect to the VSAM
master catalog. That is, only one virtual machine may have the disk
containing the master catalog in write status. This is necessary even if
only read functions are being performed during the session. This is due to
the master catalog updating read statistics at close time and, when
necessary, writing a new control record in the catalog at open time.

Under eMS, it is possible to have the master catalog disk read-only. A
programming modification (a bit in the ACB) was made to the DOS/VS
VSAM code so that VSAM knows it is running under CMS. If this bit is
on, VSAM will not write to the master catalog for either of the two cases
described above. This allows one or more CMS virtual machines to share
the VSAM master catalog~ This assumes either no other virtual machine
has the master catalog disk in write status or only one virtual machine
(DOS, as, or CMS) has it.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 279

U~GUDu@J A~v~©~~~f (J~u0J ~8A~v~
[-:--=--::====.~-==-.------.--.. --------.--.:--------------------------.~--.-.. --------.-----~

Disk Compatibility

Allocating Space

Multiple CMS users may have the VSAM master catalog disk in read-only
status but only one virtual machine may have the same in write status.
With respect to data set sharing, there is only read-sharing for the CMS
user.

Since the CMS VSAM support writes VSAM data sets to DOS disks, the
question of disk compatibility is not one between CMS and DOS nor
between CMSor as but rather between DOS and as disks. Because CMS
actually uses VSE/VSAM for processing VSAM data sets, all disks used by
CMS VSAM are DOS disks. For this reason, we need only discuss how
DOS and as disks are compatible.

In the format-4 DSCB, there is a bit iIi the VTOC indicators (byte 59, bit 0)
defined by OS/VS to indicate (when OFF) that a format-5 label is included
in the VTOC. This bit is always ON under VSE because DOS does not
maintain the format-5 label. This technique allows OS/VS to realize when
the format-5 is invalid and that it must recompute free space and rewrite
the format-5 label.

Thus, if a disk originally was used under OS/VS, further allocation could
occur under VSE but with the format-5 ignored. If the disk was then used
under OS/VS and additional allocation performed, OS/VS would recognize
the fact that the format-5 was not valid and would rewrite the format-5.

In terms of space allocation, DOS and as disks are portable between the
two systems. However, OS/VS must perform extra processing prior to using
the disk if it intends to reallocate using the format-5.

DOS and as disks containing VSAM data sets are no exception to this. as
and DOS disks containing VSAM data sets that are used under CMS are
portable among all three systems. Since CMS uses the actual VSE/VSAM
routines, all disks used under CMS to process VSAM data sets become DOS
disks.

VSE/VSAM uses physical record sizes ranging from .5K bytes to 8K bytes.
All multiples of .5K bytes between those two values are supported. OS/VS
VSAM, however, only supports physical record sizes of .5K, lK, 2K, and 4K.
Therefore, some VSAM files written under CMS cannot be used directly by
OS/VS VSAM.

It is necessary to distinguish between two types of allocation under VSAM.

1. The actual space allocation on the disk
2. Allocation within the data set itself

280 VM/SP eMS for System Programming

!---.-.-_.- .-- --_ .. _-- -- -' ._-_._-... ----_ .. _- _.-- .. _--_.-_ ... ---_._- _._ -- --_._------------------._--_ .. _-----_ ... ----- ... _-_ --- ---- .. --., --.. .

Space for VSAM components must be allocated on the DASD using the
DEFINE commands. You can only allocate space for the master catalog, a
user catalog, a data space, and a UNIQUE cluster.

In defining the actual DASD space for components, there are parameters for
the DEFINE SPACE command that allows the user to include a "secondary
allocation" specification. These parameters are CYLINDERS, RECORDS,
BLOCKS, and TRACKS. They have this secondary facility only as a
syntactic compatibility with the OS/VS access method services commands.
That is, VSE (and, therefore, CMS) does not perform secondary space
allocation on a DASD.

The facility does exist under VSE (and CMS) to extend data or index
components through already allocated data space, catalog extents, or
UNIQUE cluster extents. Thus, the CYLINDERS, TRACKS, RECORDS,
and BLOCKS parameters of the DEFINE commands for alternate indexes,
clusters, and catalogs do not dynamically allocate DASD space but only
extend a component through existing space.

Using VM/SP Minidisks

If you have a VM/SP minidisk in your virtual machine configuration, you
can use it to contain VSAM files. Before you can use it, it must be
formatted with the Device Support Facility program. When you request
that a disk be added to your userid for use with VSAM files under CMS,
you should indicate that it be formatted for use with as or DOS. Or you
can format it yourself using the Device Support Facility. How to do this is
described under "Using Temporary Disks."

Note: If you are an as user, you should be careful about allocating space
for VSAM on minidisks. Once you have used CMS AMSERV to allocate
VSAM data space on a minidisk, you should not attempt to allocate
filetional space on that minidisk using an OS/VS system. as does not
recognize minidisks, and would attempt to format the entire disk pack and
thus erase any data on it. To allocate additional space for VSAM, you
should use CMS again.

Minidisk space allocation is fully described in the VM/ SP Planning Guide
and Reference.

The LISTDS Command

For as or DOS disks or minidisks, you can use the LISTDS command to
determine the extents of free space available for use by VSAM. You can
also determine what space is already in use. You, can use this information
to supply the extent information when you define VSAM files.

The options used with VSAM disks are:

o EXTENT -- to find out what extents are in use
o FREE -- to find out what extents are available.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 281

· _ _ _ ... _. __ _ .. _. __________________ ==:J

For example, if you have an as disk accessed as a G-disk, and you enter:

listds 9 (extent

The response might look like:

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK)
000 VTOC 0099 00 1881 0099 18 1899

TRACKS
19

EXTENT INFORMATION FOR 'PRIVAT.CORE.Il1AGE.LIB' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 0000 01 1 0049 18 949 949

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 0050 00 950 0051 18 987 38

You could also determine the extent for a particular data set:

listds ? * (extent

eMS responds:

DMSLDS220R Enter dataset name:

Then, you can enter the file-id:

system.recorder.file

The response might look like:

EXTENT INFORMATION FOR 'SYSTEM RECORDER FILE' ON 'F' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 0102 00 1938 0102 18 1956 19
002 DATA 0010 06 206 0010 08 208 3

LISTDS searches all minidisks accessed until it locates the specified data
set. In this example, the data set occupies two separate extents on disk F.
If the data set i~ a multivolume data set, extents on all accessed volumes
are located and displayed.

If you want to find the free extents on a particular disk, enter:

listds 9 (free

The response might look like:

FREESPACE EXTENTS FOR 'G' DISK:
CYL-HD(RELTRK) TO CYL-HD(RELTRK)
0052 00 988 0052 01 989
0054 02 1028 0080 00 1520
0081 01 1540 0098 18 1880

TRACKS
2

493
341

You can use this information when you allocate space for VSAM files. If
you enter:

listds * (free

282 VM/SP eMS for System Programming

~8U~u~j L~WJ8[2~~1V c)u'il(] V8l\~UJ
[--------------------------------------- --------

--p- ----- ______ n _________________ p_________________ ::J

CMS lists all the free space available on all of your accessed disks.

Using Temporary Disks

When you need extra space on a temporary basis for use with CMS VSAM
and AMSERV, you can use the CP DEFINE command to create a
temporary minidisk and then use the Device Support Facilities program to
format it. Refer to the Device Support Facilities User's Guide and Reference.
Once formatted and accessed, it is available to your virtual machine for the
duration of your terminal session or until you detach it using the CP
DETACH command. Remember that anything placed on a temporary disk
is lost, so that you should copy output that you want to keep onto
permanent disks before you log off.

Formatting a Temporary Disk I.

The example below shows a control statement file and an EXEC procedure
that, together, can be used to format a minidisk using the Device Support
Facility. For a complete description of the control statements used, refer to
the Device Support Facilities User's Guide and Reference.

The input control statements for the Device Support Facility should be
plaF,ed in a CMS file so that they can be punched to your virtual card
reader. For this example, suppose the statements are in a CMS file named
TEMP DSF:

INIT UNIT(198) DEVTYP(3340) PRG NVFY VOLID(123456) DVTOC(9,7,5) -
MIMIC (MINI(10))

Note: The example above begins in column 2.

Now consider the CMS file named TEMPDISK EXEC:

/* EXEC to format a temporary as disk */

signal on error
cp define t3340 198 10
cp close reader
cp purge reader class i
cp spool punch to 1*1 class i cont nohold
punch ipl dsf 1* (Inoh
punch temp dsf '* (Inoh
cp spool punch no cant close
cp spool reader class i nohold
cp ipl DOc clear attn
exit

Error:
exit 100

You execute this procedure by entering the filename of the EXEC:

tempdisk

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 283

c=: .. ___________________________ . __ ._ __ . __ . __ __ ._ .. __ . ____ _ .. _ .. _ ... _._. __ .. ____ _ .. _ .. ___ . __ ... ____ .. ____ ._:=1

When the final line of this EXEC is executed, the Device Support Facility is
in control. You will receive the following three messages:

ICK005E DEFINE INPUT DEVICE, REPLY 'DDDD,CUU OR CONSOLE'
ENTER INPUT/COMMAND:

You should enter:

2540,OOc

to indicate that the control statements should be read from your card
reader, which is a virtual 2540 device at virtual address ~OC.

ICK006E DEFINE OUTPUT DEVICE, REPLY 'DDDD,CUU OR CONSOLE'
ENTER INPUT/COMMAND:

You should enter:

console

to indicate that the utility output should sent to your console.

ICK003D REPLY U TO ALTER VOLUME 198 CONTENTS, ELSE T
ENTER INPUT/COMMAND:

You should enter:

u

to continue the execution.

When the Device Support Facilities program is completed, your virtual
machine is in a wait state and you must reload CMS (with the IPL
command). You can then access the temporary disk:

ace 198 c

and CMS responds:

C (198) R/W - DOS

Defining DOS Input and Output Files

Note: This information is for VSE/VSAM users. OS/VS VSAM users
should refer to the section "Defining as Input and Output Files". You may
use the DLBL command to define VSAM input and output files for both the
AMSERV command and for program execution. The operands required on
the DLBL command are:

dlbl ddname filemode DSN datasetname (options SYSxxx

where "ddname" corresponds to the FILE parameter in the AMSERV file
and "datasetname" corresponds to the entry name or filename of the VSAM
file.

284 VM/SP eMS for System Programming

c:,:_-=:=:===-~=,,:::-,-,,:,:,:,::,,::-~-·_-·_-_···_--_····_--_·····_·--·_-·_ _ -_ .. _ ... -_-_-----.-.-.--.. --_-.. _-_.--_ _ _ .. -_ .. _ .. _ .. -_.-_ .. _ _ _.-_-._ .. _--_.-_ .. _._ .. _ ... _ ... --_ .. -_.-_ .. --_-._ .. _.--_ .. -_--_---_.--_._ .. -_.--_-_---_-.. _-... _-.--.-J-•• -}

Using VSAM Catalogs

Note: In the CMS/DOS and CMS/VSAM environments, filemodes "R" and
"T" cannot be used on the DLBL command. These filemodes cannot be used
because in CMS/DOS and CMS/VSAM, "R" and "T" are used as
abbreviations for reader and terminal.

There are several options you can use when issuing the DLBL command to
define VSAM input and output files. These options are:

VSAM indicates that the file is a VSAM file.

Note: You do .not have to use the VSAM option to identify a file
as a VSAM file if you are using any of the other options listed
here, since they imply that the file is a VSAM file. In addition,
the ddnames (filenames) IJSYSCT and IJSYSUC also indicate
that the file being defined is a VSAM file.

EXTENT defines a catalog or a VSAM data space. You are prompted to
enter the volume information. This option provides the function
of the EXTENT card in VSE.

MULT accesses a multivolume VSAM file. You are prompted to enter
the extent information.

CAT identifies a catalog that contains the entry for the VSAM file
you are defining.

BUFSP specifies the size of the buffers VSAM should use during program
execution.

Options are entered following the open parenthesis on the DLBL command
line, with the SYSxxx:

assgn sys003 e
dlbl filel bl dsn workfile (extent cat cat2 sys003

While you are developing and testing your VSAM programs in CMS, you
may find it convenient to create and use your own master catalog, which
may be on a CMS minidisk. VSAM catalogs, like any other cluster, can be
shared read-only among several users.

You name the VSAM master catalog for your terminal session using the
logical unit SYSCAT in the ASSGN command and the ddname IJSYSCT for
the DLBL command. For example, if your VSAM master catalog is located
on a DOS disk you have accessed as a C-disk, you would enter:

assgn syscat c
dlbl ijsysct c dsn rnastcat (syscat

Note: When you use the ddname IJSYSCT, you do not need to specify the
VSAM option on the DLBL command.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 285

L: ___ . __ . __ ._. ___ . __ ... __ .. __ ._. ___ .. __ . ___ . ______________ . ____ . ___ . ___ . ________________ . ______________ 1

Defining a Master Catalog

You must define the master catalog at the start of every terminal session.
If you are always using the same master catalog, you might include the
ASSGN and DLBL commands in an EXEC procedure or in your PROFILE
EXEC. You could also include the commands necessary to access the DOS
system residence volume and enter the CMS/DOS environment:

ACCESS 350 Z
SET DOS ON Z (VSAM
ACCESS 555 C
ASSGN SYSCAT C
DLBL IJSYSCT C DSN MASTCAT (SYSCAT PERM

You should use the PERM option so that you do not have to reset the
master catalog assignment after clearing previous DLBL definitions.

You must use the VSAM option on the SET DOS ON command if you want
to use any access method services function or access VSAM files.

The sample ASSGN and DLBL commands used above are almost identical
to those you issue to define a master catalog using AMSERV. The only
difference is the EXTENT option that lists the data spaces that this master
catalog is to control.

As an example, suppose that you have a 30-cylinder 3330 minidisk assigned
to you to use for testing your VSAM programs under CMS. Assuming that
the minidisk is in your directory at address 333, you should first access it:

access 333 d
D (333) R/W - DOS

If you formatted the minidisk yourself, you know what its label is. If not,
you can find out what the label is by using the CMS command:

query search

The response might be:

USR191
DOS333
SYS190
SYS19E

191 A
333 D
190 S
19E Y/S

R/W
R/W - DOS
R/O
R/O

Use the label DOS333 in the VOLUMES parameter in the MASTCAT
AMSERV file:

286 VM/SP eMS for System Programming

r. n •• • - --.. -.-.--.---- .. - ... -... _. -..... _ - .. _.. _ _---_ .. _ .. _-- ._---_ .. _---------_._-_ ... _._-_.----_ ... _ _-----_ ... _- '--'--J

DEFINE MASTERCATALOG -
(NAME ('MASTCAT)
VOLUME (DOS333) -
CYL (4) -
FILE (IJSYSCT)

To find out what extents on the minidisk you can allocate for VSAM, use
the LISTDS command with the FREE option:

listds d (free

The response from LISTDS might look like this:

FREESPACE INFORMATION FOR 'D' DISK:
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
0000 01 1 0000 09 9 9
0000 11 11 0029 18 569 560

From this response, you can see that the volume table of contents (VTOC)
is located on the first cylinder, so you can allocate cylinders 1 through 29
forVSAM:

assgn syscat d
dlbl ijsysct d dsn mastcat (syscat perm extent
DMSDLB331R Enter extent specifications:
19 551

(null line)

After entering the extents, in tracks, giving the relative track number of
the first track to be allocated followed by the number of tracks, you must
enter a null line to complete the command. A null line is required because,
when you enter multiple extents, entries may be placed on more than one
line. If you do not enter a null line, the next line you enter causes an
error, and you must re-enter all of the extent information.

Note: As in OS, the extents must be on cylinder boundaries, and you
cannot allocate cylinder O.

Now you can issue the AMSERV command:

amserv mastcat

A ready message with no return cO,de indicates that the master catalog is
defined. You do not need to reissue the ASSGN and DLBL commands in
order to use the master catalog for additional AMSERV functions.

Defining User Catalogs

You can use the AMSERV command to define private catalogs and spaces
for them. The procedures for determining what space you can allocate are
the same as those outlined in the example of defining a master catalog.

To define a user catalog, you may use any programmer logical unit and any
ddname:

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 287

Using Job Catalogs

access 199 e
listds e (free

assgn sys001 e
dlbl cat1 e dsn private.cat1 (sys001 extent perm

amserv usercat

The file USERCAT AMSERV might contain the following:

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
CYL (4) -
VOLUME (DOSVS2)) -
CATALOG (MASTCAT)

After this AMSERV command has completed successfully you can use the
catalog PRIVATE.CATl. When you issue a DLBL command to identify a
cluster or data set cataloged in this catalog, you must identify the catalog
using the CAT option on the DLBL command for the file:

assgn sys100 c
dlbl file2 c dsn ? (sys100 cat cat1

Or, you can define this catalog as a job catalog.

If you want to set up a user catalog as a job catalog so that it will be
searched during all subsequent jobs, you can define the catalog using the
special ddname IJSYSUC. For example:

assgn sys101 c
dlbl ijsysuc c dsn private.cat1 (sys101 perm

If you defined a user catalog (IJSYSUC) for a terminal session and you use
the AMSERV command to access a VSAM file, the user catalog takes
precedence over the master catalog. This means that for files that already
exist, only the job catalog is searched. When you define a cluster, it is
cataloged in the job catalog, rather than in the master catalog, unless you
use the CAT option to override it.

If you want to use additional catalogs during a terminal session, you first
define them just as you would any other VSAM file:

assgn sys010 f
dlbl mycat2 f dsn private.cat2 (sys010 vsam

288 VM/SP eMS for System Programming

r------·-------·- --.------.... -----.. ---------_.-------------.------.-------.---.-.---.-.. -_.-.---------.--.--------.--.-.]

Catalog Passwords

Then, when you enter the DLBL command for the VSAM file that is
cataloged in PRIVATE.CAT2, use the CAT option to refer to the ddname of
the catalog:

assgn sysOll f
dlbl input f dsn input. file (sysOll cat mycat2

If you want to stop using a job catalog defined with the ddname IJSYSUC,
you can clear it using the CLEAR option of the DLBL command:

dlbl ijsysuc clear

Then, the master catalog becomes the job catalog for files not defined with
the CAT option.

When you define passwords for VSAM catalogs in CMS, or when you use
CMS to access VSAM catalogs that have passwords associated with them,
you must supply the password from your terminal when the AIV1SERV
command executes. The message you receive to prompt you for the
password is the same message you receive when you execute access method
services:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
FILE catalog

When you enter the proper password, AMSERV continues execution.

Verifying A Catalog Structure

As a CMS VSAM user (with or without DOS set ON), you can use the CMS
CATCHECK command to invoke the VSE/VSAM Catalog Check Service
Aid to verify a complete catalog structure. If you do not specify a catalog
name with the CATCHECK command, the job catalog specified with the
DLBL command is used. CATCHECK produces a print file containing the
catalog analysis. For example, issuing:

dlbl ijsysuc f dsn private.catl (vsam

and

catcheck

results in a print file containing the VSE/VSAM Catalog Check output.

If you had issued only a DLBL for the master catalog, issuing:

catcheck private.catl

produces the same result.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 289

L ... ___ . __ . ______ . __
------.---~

Defining and Allocating Space for VSAM files

You can use CMS AMSERV to allocate additional data spaces for VSAM.
To use the DEFINE SPACE control statement, you must have defined the
catalog that will control the space, and you must have the volume or
volumes where the space is to be allocated, mounted, and accessed.

For example, suppose you have a DOS-formatted 3330 disk attached to your
virtual machine at virtual address 255. After accessing the disk and
determining the free space on it, you could create a file named SPACE
AMSERV:

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456)) -
CATALOG (PRIVATE.CAT2 CAT2)

Before executing this AMSERV file, define PRIVATE.CAT2 as a user
catalog using the ddname CAT2. Then define the ddname for the FILE
parameter:

access 255 c
assgn sys010 c
dlbl cat2 c dsn private.cat2 (sysOl0 vsam
assgn sysOll c
dlbl file1 c (extent sysOl1 cat cat2
amserv space

You do not need to enter a data set name to define the space. When CMS
prompts you for the extents of the space, you can enter the extent
specifications:

DMSDLB331R Enter extent specifications:
190 1900

When you define space for VSAM, you should be sure that the VOLUMES
paraJIleter and the space allocation parameter (whether CYLINDER,
TRACKS, BLOCKS, or RECORDS) in the AMSERV file agree with the
information you provide in the DLBL command. All data extents must
begin and end on cylinder boundaries. Any additional space you provide in
the extent information that is beyond what you specified in the AMSERV
file is claimed by VSAM.

290 VM/SP eMS for System Programming

[----_ ... _._----_ .. _._-_ .. _-_._---_._-_ --.---........... --.--=-::=.-.. ----.~- .. --.. -----:-..

Specifying Multiple Extents

When you are specifying extents for a master catalog, data space, or unique
file, you can specify up to 16 extents on a volume for a particular space.
When prompted by CMS to enter the extents, you must separate different
extents by commas or place them on different lines. To specify a range of
extents in the above example, you can enter:

dlbl file1 c (extent sys011
190 190, 570 190, 1900 1520

(null line)
or --

dlbl file1 c (extent sys011
190 190
570 190
1900 1520

(null line)

Again, the first number entered for each extent represents the relativ:e
track for the beginning of the extent and the second number indicates the
number of tracks.

Specifying Multivolume Extents

You can define spaces that span up to nine volumes for VSAM files. All of
the volumes must be accessed and assigned when you issue the DLBL
command to define or identify the data space.

You should remember, though, that if you are using AMSERV and you do
not use the PRINT option, you must have a read/write CMS disk so that
AMSERV can write the output LISTING file.

If you are defining a new multivolume data space or unique cluster, you
must specify the extents on each volume that the data is to occupy (starting
track and number of tracks) followed by the disk mode letter where the disk
is accessed and the programmer logical unit to which the disk is assigned.
For example:

access 135 b
access 136 c
access 137 d
assgn sys001 b
assgn sys002 c
assgn sys003 d
dlbl newfile b (extent sys001
DMSDLB331R Enter extent specifications:
100 60 b sys001, 400 80 b sys001, 60 40 d sys003
2000 100 c sys002

(null line)

If you specify more than one extent on the same line, the extents must be
separated by commas. Different extents for the same volume must be
entered consecutively.

Note: In the preceding example, the extent information is for 2314 disks.
These extents are also on cylinder boundaries.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 291

L _____ ._ -..... _. _ __ ,., .. _, ".""",.", ... ,_ "" ""." " .. _. __ .. _________ ~=__=__=J

When you enter multivolume extents, you can use a default mode. For
example:

dlbl newfile b (extent sys001
DMSDLB331R Enter extent specifications:
100 60, 400 80, 60 40 d sys003,
2000 100 c sys002

(null line)

Any extents you enter without specifying a mode letter and SYSxxx value
default to the mode and SYSxxx on the DLBL command line, in this case,
the B-disk, SYSOOl.

If you make any errors issuing the DLBL command or extent information,
you must re-enter the entire command sequence.

Identifying Existing Multivolume Files

When you issue a DLBL command to identify an existing multivolume
VSAM file, you must use the MULT option of the DLBL command:

dlbl old b1 dsn ? (sys002 mult
DMSDLB220R Enter dataset name:
dostest.file
DMSDLB330R Enter volume specifications:
c sys004, d sys003
e sys007

(null line)

When you enter the DLBL command, you should specify the mode letter
and logical unit for the first volume on the command line. When you enter
the MULT option, you are prompted to enter additional specifications for
the remaining extents. In the preceding example, the data set. has extents
on disks accessed as B-, C-, D-, and E-disks.

Using Tape Input and Output

If you are using AMSERV for a function that requires tape input and/or
output, you must have the tape(s) attached to your virtual machine. The
valid addresses for tapes are 181 through 184. When referring to tapes, you
can also refer to them using their CMS symbolic names T API through
TAP4."

For AMSERV functions that use tape input/output, the TLBL control
statement is simulated by building a dummy DLBL containing a
user-supplied ddname (filename). CMS does not read tape labels and does
not recognize tape data set names.

When you invoke the AMSERV command, you must use the TAPIN or
TAP OUT option to specify the tape device being used:

amserv export (tapout 181

292 VM/SP eMS for System Programming

[JJJSDuuC] [\D.~8[~r;:1'~j G1U~~] t78!\~uJ
c--.-.·---------.-------------------·-··------.-.---.. --.----.. ----... -.... ----_~~::.:.::.-==_==_-::--------.. -.... ----_-=-=-___ ::::1

In this example, the output from the AMSERV control statements in a file
named EXPORT goes to a tape at virtual address 181. CMS prompts you to
enter the ddname:

DMSAMS367R Enter tape output DDNAMEs:

After you enter the ddname specified on the FILE parameter in the
AMSERV file and press the carriage return, the AMSERV command
executes.

AMSERV opens all tape files as standard labelled tapes or non-labelled
tapes. If you are using standard labelled tapes, you need to specify a
LABELDEF command with AMSERV. The LABELDEF command is the
CMS/DOS equivalent of VSE TLBL control statement. The LABELDEF
command is used to specify information in VOL1 and HDR1 labels on the
tape. See the description of the LABELDEF command in VM/ SP CMS
Command Reference for more information on this command.

You should use the same name for the filename on your LABELDEF
command as you do for the ddname you enter in reply to message
DMSAMS367R (the ddname specified on the FILE parameter in the
AMSERV file). However, the LABELDEF command must be issued before
the AMSERV command. The following sequence of commands might be
used when you have standard labelled tape output:

assgn sys005 tap1
tape rew (181
assgn syscat e
assgn sys006 e
labeldef catout fid catfile volid amserv
dlbl ijsysct e dsn mastcat (syscat vsam
dlbl catin e dsn file (sys006 vsam
amserv repro (tapout 181

DMSAMS367R Enter tape output DDNAMEs:

catout

Note: If you do not care what is written in a tape output label or do not
want input labels checked, you can specify a LABELDEF with no
parameters other than filename. When you enter:

1abe1def intape

for an input tape with ddname INTAPE, the standard labels on the tape are
skipped without any checking. A similar statement for an output tape
writes tape labels with default values (see the description of the
LABELDEF command in VM/SP CMS Command Reference.)

If you use non-labelled tapes, LABELDEF is not required.

Chapter 10. Using Access Method Services and VSAM under CMS and eMS/DOS 293

UllsUUi1gJ A~v~©~L?JV @uu0J tl1§AQv~
L ____________ ,, __________ _ . _______ . __ . __ . ________________ .. __ . __ .. ____ +=J

Reading VSAM Tape Files

When you create a tape in eMS using AMSERV, eMS writes a tape mark
preceding each output file that it writes. When the same tape is read using
AMSERV under eMS, HDRI and VOLI labels are checked using the
LABELDEF command you provide. If you read this tape in a real VSE
system, you should use a TLBL card instead of the LABELDEF command.

Similarly, when you create a tape under a VSE system using access method
services, if the tape is created with standard labels, eMS AMSERV has no
difficulty reading it.

The only time you should worry about positioning a tape created by
AMSERV is when you want to read the tape using a method other than
AMSERV, for example, the MOVEFILE command. Then, you must forward
space the tape past the label using the eMS TAPE command before you can
read it.

Defining OS Inpui and OuRpuR fUes

Note: This information is for OSjVS VSAM users only. VSEjVSAM users
should refer to "Defining DOS Input and Output Files" for information on
defining files for use with VSAM.

The OSjVS VSAM user should bear in mind that eMS uses VSEjVSAM to
manipulate VSAM files. The VSAM and AMS statements that can be used
are described in the publication Using VSEj VSAM Commands and Macros.

In addition, there are certain incompatibilities between VSEjVSAM and
OSjVS VSAM. For a description of these incompatibilities, refer to the
VSEj VSAM General Information Manual.

If you are going to use access method services to manipulate VSAM or
SAM files or you are going to execute VSAM programs under eMS, use the
DLBL command to define the input and output files. The basic format of
the DLBL command is:

DLBL ddname filemode DSN datasetname (options

where ddname corresponds to the FILE parameter in the AMSERV file and
datasetname corresponds to the entry name of the VSAM file. That is, the
name specified in the NAME parameter of an access method services
control statement.

If you are using a eMS file for AMSERV input or output, use the eMS
operand and enter eMS file identifiers as follows:

dlbl mine a ems out filel (vsam

The maximum length allowed for ddnames under eMS VSAM is seven
characters. This means that if you have assigned eight-character ddnames

294 VMjSP eMS for System Programming

~~GUUu~J !-\L~JSL~L:,lvJ eJu-JctJ t78l:\QJJ
c.:=--=:::..===_=-:::.::..--::-----------------·--- -"-'-"-"- .-. ---.. ---~ ------.... -..... -.. --- .. -. -- -" .. --.... -.---.. ------------- -------.. ----------.... -- -.-.--------~~--.-.--... --.. -.. ----.---._=_..:._:::J

(or filenames) to files in your programs, only the first seven characters of
each ddname are used. So, if a program refers to the ddname OUTPUTDD,
you should issue the DLBL command for a ddname of OUTPUTD. Since
you can encounter problems with a program that contains ddnames with
the same first seven characters, you should recompile those programs using
seven-character ddnames.

Note: In the CMS/DOS and CMS/VSAM environments, filemodes "R" and
"T" cannot be used on the DLBL command. These filemodes cannot be used
because in CMS/DOS and CMS/VSAM, "R" and "T" are used as
abbreviations for reader and terminal.

There are several options you can use when issuing the DLBL command to
define VSAM input and output files. These options are:

VSAM indicates that the file is a VSAM file.

Note: You do not have to use the VSAM option to identify a file
as a VSAM file if you are using any of the other options listed
here, since they imply that the file is a VSAM file. In addition,
the ddnames (filenames) IJSYSCT and IJSYSUC also indicate
that the file being defined is a VSAM file.

EXTENT defines a catalog or a VSAM data space. You are prompted to
enter the volume information.

MULT accesses a multivolume VSAM file. You are prompted to enter
the extent information.

CAT identifies a catalog which contains the entry for the VSAM file
you are defining.

BUFSP specifies the size of the buffers VSAM should use during program
execution.

Allocating Extents on as Disl{s and Minidisfts

When you use access method services to manipulate VSAM files under as,
you do not have to worry about allocating the real cylinders and tracks to
contain the files. You can, however, use CMS commands to indicate which
cylinders and tracks should contain particular VSAM spaces when you use
the DEFINE control statement to define space.

Extents for VSAM data spaces can be defined, in AMSERV files, in terms of
cylinders, tracks, or records. Extent information you supply to CMS when
executing AMSERV must always be in terms of tracks. When you define
data spaces or unique clusters, the extent information (number of cylinders,
tracks, or records) in the AMSERV file must match the extents you supply
when you issue the DLBL command to define the file. When you supply
extent information for the master catalog, any extents you enter in excess
of those required for the catalog are claimed by the catalog and used as
data space.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 295

L _____________________ , __ _ ____________ . __ . ____ _. _____ . __ .. ___ . __ .. _ . .J

Using VSAM Catalogs

eMS does not make secondary space allocation for VSAM data spaces. If
you execute an AMSERV file that specifies a secondary space allocation,
eMS ignores the parameter.

When you use the DLBL command to define VSAM data space, you can use
the EXTENT option indicating to eMS that you are going to enter data
extents. For example, if you enter:

dlbl space b (extent

eMS prompts you to enter the extents:

DMSDLB331R Enter extent specifications:

When you enter the extents, you specify the relative track number of the
first track of the extent, followed by the number of tracks. For example, if
you are allocating an entire 2314 disk, you would enter:

20 3980
(null line)

You can never write on cylinder 0 track 0, and since VSAM data spaces
must be allocated on cylinder boundaries, you should never allocate
cylinder O. Cylinder 0 is often used for the volume table of contents
(VTOC) as well. Therefore, it is always best to begin defining space with
cylinder 1.

You can determine what disk extents on an OS disk or minidisk are
available for allocation by using the LISTDS command with the FREE
option, which also indicates the relative track numbers as well as actual
cylinder and he.ad numbers.

While you are developing and testing your VSAM programs in CMS, you
may find it convenient to create and use your own master catalog, which
may be on a CMS minidisk. VSAM catalogs, like any other cluster, can be
shared read-only among several users.

You name the VSAM master catalog for your terminal session using the
ddname IJSYSCT for the DLBL command. For example, if your VSAM
master catalog is located on an OS disk you have accessed as a C-disk, you
would enter:

dlbl ijsysct c dsn master catalog (perm

You must define the master catalog at the start of every terminal session.
If you are always using the same master catalog, you might include the
DLBL command you need to define it in your PROFILE EXEC:

ACCESS 555 C
DLBL IJSYSCT C DSN MASTCAT (PERM

296 VM/SP eMS for System Programming

r .. ··----·-'.,--,··-·--· -..... -- --.. --.---.-... -----.-- .. -., .. -------.,---,.---... ---.-----.. -.----.. ---.---------.--.----.---------.--.----- --- " ... --.... ---'.-.. "

Defining a Master Catalog

You should use the PERM option so that you do not have to reset the
master catalog assignment after clearing previous DLBL definitions. The
command:

dlbl * clear

clears all file definitions except those entered with the PERM option.

The sample DLBL command used in the preceding example is almost
identical with the one you would issue to define a master catalog using
AMSERV. The only difference is that you can enter the EXTENT option so
you can list the data spaces that this master catalog is to control.

As an example, suppose that you have a 30-cylinder 3330 minidisk assigned
to you to use for testing your VSAM programs under CMS. Assuming that
the mini disk is in your directory at address 333, you should first access it:

access 333 d
D (333) R/W - DOS

If you formatted the mini disk yourself, you know what label you assigned
it. If not, you can find out the label assigned to the disk by issuing the
CMS command:

query search

The response might be:

USR191
VSAM03
SYSI09
SYS19E

191 A
333 D
190 S
19E Y/S

R/W
R/W - DOS
RIO
RIO

Use the volume label VSAM03 in the MASTCAT AMSERV file:

DEFINE MASTERCATALOG -
(NAME (MASTCAT)
VOLUME (VSAM03) -
CYL (4) -
FILE (IJSYSCT)

To find out what extents on the mini disk you can allocate for VSAM, use
the LISTDS command with the FREE option:

listds d (free

The response from LISTDS might look like this:

FREESPACE INFORMATION FOR 'D' DISK:
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
0000 01 1 0000 09 9 9
0000 11 11 0029 18 569 560

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 297

~~DD~ug {\~v~8[~~V wUDe] V8[\~v~
L-____ . __ . _______ __ . _________ . _________ ._. ___ . __ . _________ .. _ _ __ __ ... __ __ ... J

Defining User Catalogs

From this response, you can see that the VTOC is located on the first
cylinder, so you can allocate cylinders 1 through 29 for VSAM:

dlbl ijsysct d dsn mastcat (perm extent
DMSDLB331R Enter extent specifications:
19 551

(null line)

After entering the extents, in tracks, giving the relative track number of
the first track to be allocated followed by the number of tracks, you must
enter a null line to complete the command. (A null line is required because,
when you enter multiple extents, entries may be placed on more than one
line.)

Now you can issue the AMSERV command:

arnserv rnastcat

A ready message with no return code indicates that the master catalog is
defined. You do not need to reissue the DLBL command in order to identify
the master catalog for additional AMSERV functions.

You can use the AMSERV command to define private catalogs and spaces
for them. The procedures for determining what space you can allocate are
the same as those outlined in the example of defining a master catalog.

To define a user catalog, you can assign any ddname you want:

access 199 e
listds e (free

dlbl cat1 e dsn private.cat1 (extent

amserv usercat

The file USERCAT AMSERV might contain the following:

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (CAT1)-
CYL (4) -
VOLUME (OSVSAM)) -
CATALOG (MASTCAT)

After this AMSERV command has completed successfully, you can use the
catalog PRIVATE.CATl. When you define a file cataloged in it, you
identify the catalog using the CAT option on the DLBL command:

dlbl file2 e dsn ? {cat cat1

298 VM/SP eMS for System Programming

GJouuuu r~QJJ8[!~~1~ [Jul1iJ V8l\~,n
L~~"::_~:.~_~·~~=-_:.=_:~-=.~=_:~==--=·-·-----·---···--------- .. ---.-.-.-----------------------.--.. ---.-------.-----.-----------.-----------J

Using a Job Catalog

Catalog Passwords

Or, you can define it as a job catalog.

During a terminal session, you may be referencing the same private catalog
many times. If this is the case, you can identify a job catalog by using the
ddname IJSYSUC. Then, that catalog is searched during all subsequent
jobs unless you override it using the CAT option when you use the DLBL
command to define a file.

If you defined a user catalog (IJSYSUC) for a terminal session and you use
the AMSERV command to access a VSAM file, the user catalog takes
precedence over the master catalog. This means that for files that already
exist, the job catalog is searched. When you define a cluster, it is cataloged
in the job catalog, rather than in the master catalog, unless you use the
CAT option to override it. CMS never searches more than one VSAM
catalog.

You should use the CAT option to name a catalog when the AMSERV file
you are executing references, with the CATALOG parameter, a catalog that
is not defined either as the master catalog or as a user catalog.

If you want to use additional catalogs during a terminal session, you first
define them just as you would any other VSAM file:

dlbl mycat2 f dsn private.cat2 (vsam

Then, when you enter the DLBL command for the VSAM file that is
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of
the catalog:

dlbl input f dsn input. file (cat mycat2

If you want to stop using a job catalog defined with the ddname IJSYSUC,
you can clear it using the CLEAR option of the DLBL command:

dlbl ijsysuc clear

or, you can assign the ddname IJSYSUC to some other catalog. If you clear
the ddname for IJSYSUC, then the master catalog becomes the job catalog.

When you define passwords for VSAM catalogs in CMS or when you use
CMS to access VSAM catalogs that have passwords associated with them,
you must supply the password from your terminal when the AMSERV
command executes. The message you receive to prompt you for the
password is the same message you receive when you execute access method
services:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 299

When you enter the proper password, AMSERV continues execution.

Verifying a Catalog Struciure

As a CMS VSAM user (with or without DOS set ON), you can use the CMS
CATCHECK command to invoke the VSE/VSAM Catalog Check Service
Aid to verify a complete catalog structure. If you do not specify a catalog
name with the CATCHECK command, the catalog specified with the DLBL
command is used. CATCHECK produces a print file containing the catalog
analysis. For example, issuing:

dlbl ijsysuc f dsn private.catl (vsam

and

catcheck

results in a print file containing the VSE/VSAM Catalog Check output.

If you had issued only a DLBL for the master catalog, issuing:

catcheck private.catl

produces the same result.

Defining and Allocating Space for VSAM files

You can use CMS AMSERV to allocate additional data spaces for VSAM.
To use the DEFINE SPACE control statement, you must have defined
either the master catalog or a user catalog that will control the space, and
you must have the volume or volumes where the space is to be allocated,
mounted, and accessed.

For example, suppose you have an as 3330 disk attached to your virtual
machine at virtual address 255. After accessing the disk and determining
the free space on it, you could create a file named SPACE AMSERV:

DEFINE SPACE -
(FILE {FILEl) -
TRACKS (1900) -
VOLUME (123456)) -
CATALOG (PRIVATE.CAT2 CAT2)

Before executing this AMSERV file, define PRIVATE.CAT2 using the
ddname CAT2. Then define the ddname for the file:

access 255 c
dlbl cat2 c dsn private.cat2 (vsam
dlbl filel c (extent cat cat2

300 VM/SP eMS for System Programming

~S~U-l)tJ l\~VJ8~~'Tt7 cluut] VSf~\~01
[____ •• _ •..••• _ ••• ___ • ___________ _ ••• _. _________ .. ···._ •• ··_ •• u_ __ _ _ ... __ _ ___ __ _ _ .. __ ... ______ .. _._._ ... : __ .. ___ ~~

You do not need to enter a data set name to define the space. When CMS
prompts you for the extents of the space, you can enter the extent
specifications:

DMSDLB331R Enter extent specifications:
190 1900

When you define space for VSAM, you should be sure that the VOLUMES
parameter and the space allocation parameter (whether CYLINDER,
TRACKS, BLOCKS, or RECORDS) in the AMSERV file agree with the
track information you provide in the DLBL command.

Specifying Multiple Extents

When you are specifying extents for a master catalog, data space, or unique
file, you can specify up to 16 extents on a volume for a particular space.
When prompted by CMS to enter the extents, you must separate the
different extents by commas or place them on different lines. To specify a
range of extents in the above example, you could enter:

dlbl filel c (extent
190 190, 570 190, 1900 1520

(null line)
or --

dlbl filel c (extent
190 190
570 190
1900 1520

(null line)

Again, the first number entered for each extent represents the relative
track for the beginning of the extent and the second number indicates the
number of tracks.

Specifying Multivolume Extents

You can define spaces that span up to nine volumes for VSAM files. All of
the volumes must be accessed and assigned when you issue the DLBL
command to define or identify the data space.

You should remember, though, that if you are using AMSERV and you do
not use the PRINT option, you must have a read/write CMS disk so that
AMSERV can write the output LISTING file.

If you are defining a new multivolume data space or unique cluster, you
must specify the extents on each volume that the data is to occupy (starting
track and number of tracks) followed by the disk mode letter at which the
disk is assigned:

Chapter 10. Using Access Method Services and VSAIVI under CMS and CMS/DOS 301

L ________ . __ .. ___ .. _ ________ ._ .. ____________ _

access 135 b
access 136 c
access 137 d

_ _________________________ . ______ . __________ ._ .. ____ J

dlbl newfile b (extent
DMSDLB331R Enter extent specifications:
100 60 b, 400 80 b, 60 40 d,
2000 100 c

(null line)

If you specify more than one extent on the same line, the extents must be
separated by commas. If you enter a comma at the end of a line, it is
ignored. Different extents for the same volume must be entered
consecutively.

Note: In this example, the extent information is for 2314 disks. These
extents are also on cylinder boundaries.

When you enter multivolume extents, you do not have to enter a mode
letter for those extents on the disk identified in the DLBL command. For
the extents on disk B in the above example, you could enter:

dlbl newfile b (extent
DMSDLB331R Enter extent specifications:
100 60, 400 80, 60 40 d
2000 100 c

(null line)

If you make any errors issuing the DLBL command or extent information,
you must reissue the entire command sequence.

Identifying Existing Multivolume Files

When you issue a DLBL command to identify an existing multivolume
VSAM file, you must use the MULT option of the DLBL command:

dlbl old b1 dsn ? (mult
DMSDLB220R Enter dataset name:
vsamtest.file
DMSDLB330R Enter volume specifications:
c, d
e

(null line)

When you enter the DLBL command you should specify the mode letter for
the first disk volume on the command line. When you enter the MULT
option you are prompted to enter additional specifications for the remaining
extents. In the above example, the data set has extents on disks accessed as
B-, C-, D-, and E-disks.

302 VM/SP eMS for System Programming

Using Tape Input and Output

Reading Tapes

If you are using AMSERV for a function that requires tape input and/or
output, you must have the tape(s) attached to your virtual machine. The
valid addresses for tapes are 181 through 184. When referring to tapes, you
can also refer to them using their eMS symbolic names T API through
TAP4.

When you use AMSERV to create or read a tape, you supply the ddname
for the tape device interactively, after you issue the AMSERV command.
To indicate to AMSERV that you are using tape for input or output, you
must use the TAPIN or TAP OUT option to specify the tape device being
used:

labeldef tapedd fid filename ...
amserv export (tapout 181

In this example, the output from an EXPORT function is to a tape at virtual
address 181. eMS prompts you to enter the ddname:

DMSAMS367R Enter tape output DDNAMEs:

After you enter the ddname (TAPEDD in this example) for the tape file,
AMSERV begins execution.

AMSERV in eMS assumes that tape volumes used for input and/or output
have IBM standard tape labels, i.e., VaLl, HDRl, etc. The user can
override this default by indicating to AMSERV via Access Method Services
control statements to use nonlabel tapes. If standard label tapes are used,
the LABELDEF command is required. The eMS/DOS routine that performs
the tape open needs label information for standard label tapes. See the
description of the LABELDEF command in the VM/ SP CMS Command
Reference for further information. The filename you specify on the
LABELDEF command should be the same one you use to reply to the access
method service message that requested you to supply the tape's ddnames.
However, the LABELDEF command must be issued before the AMSERV
command. If you only want the tape labels skipped, but not checked, enter
a LABELDEF with no parameters other than filename.

Standard label tapes used for input must always contain standard VOLl,
HDRl, and EOFllabels or they are rejected by eMS AMSERV. Standard
label output tapes do not need to contain VOLI labels because the user is
prompted to enter a volume serial ij.umber and have the VOL 1 label written
if he wants. However, blank tapes should not be used for output because
the open routine tries to read the tape.

When you create a tape file using AMSERV under eMS, eMS writes a
label file preceding each output file. When eMS AMSERV is used to read
this same file, it checks the HDRI and VaLl labels using the LABELDEF
command you provide before it reads the data file. If you want to read the
tape on a real OS/VS system, however, you must use either LABEL = SL or

Chapter 10. Using Access Method Services and VSAM under CMS and eMS/DOS 303

lD8Cu'~rJ r~~v~S[![=Jt1 @~Il(J VSAM
[~=-===~:==-=------~--.-.-----

__________ . ________ . ___ . ___________ . __ . _____ ._J

LABEL = (2,NL) as a parameter on the data definition (DD) card for the
tape.

If you are creating a tape under OS/VS access method services to be read by
eMS AMSERV, you must be sure to create the tape using standard labels
so that eMS can read it properly. eMS cannot read a tape created with
LABEL = (,NL) on the DD card.

For CMS to read this tape for any other purpose (for example, to use the
MOVEFILE command to copy it), you must remember to forward space the
file past the tape mark before beginning to read it.

Using AMSERV under eMS

This section provides examples of AMSERV functions executed under eMS.
The examples are applicable to both the CMS (OS) and CMS/DOS
environments. You should be familiar with the material presented in either
"Defining DOS Input and Output Files" or "Defining OS Input and Output
Files," depending on whether you are a DOS or an OS user, respectively.
For the examples shown below, command lines and options that are
required only for CMS/DOS users are shaded. OS users should ignore these
shaded entries.

A CMS variable format file cannot be used directly as input to AMSERV
functions as a variable (V) or variable blocked (VB) file because the
standard variable CMS record does not contain the BL and RL -headers
needed by the variable record modules. If these headers are not included in
the record, errors will result.

All files placed on the eMS disk by AMSERV show a RECFM of V, even if
the true format is fixed (F), fixed blocked (FB), undefined (U), variable (V),
or variable blocked (VB). You must know the true format of the file you
are trying to use with the AMSERV command and access it properly or
errors will result.

A eMS standard variable-format file can be accessed as RECFM = U to use
the file as follows:

AMSERV AMREPUV

The file AMREPUV AMSERV contains the following 2 cards:

REPRO INFILE (INPUT ENV(RECFM(U),BLKSZ(800),PDEV(3330»)
OUTFILE (OUTPUT ENV(RECFM(V),BLKSZ(800),RECSZ(84),PDEV(3330»)

The input file can be any eMS file with LRECL 800 or less. The output file
will be a true variable file that can be used with AMSERV.

304 VM/SP eMS for System Programming

/

The DEFINE and DELETE Functions

When you use the DEFINE and DELETE control statements of AMSERV,
you do not need to specify the DSN parameter on the DLBL command:

assgn syscat c
dlbl ijsysct c (perm extent syscat

If the above commands are executed prior to an AMSERV command to
define a master catalog, the DEFINE will be successful as long as you have
assigned a data set name using the NAIV1E parameter in the AMSERV file.
The same is true when you define clusters or when you use the DELETE
function to delete a cluster, space, or catalog.

When you do not specify a data set name, AMSERV obtains the name from
the AMSERV file. In the case of defining or deleting space, no data set
name is needed. The FILE parameter corresponding to the ddname is all
that is necessary, and AMSERV assigns a default data set name to the
space.

When you define space on a minidisk using AMSERV, eMS does not check
the extents you specify to see whether they are greater than the number of
cylinders available. As long as the starting cylinder is a valid cylinder
number and the extents you specify are on cylinder boundaries, the
DEFINE function completes successfully. However, you receive an error
message when you use an AMSERV function that tries to use this space.

Defining a Suballocated Cluster

To define a cluster for VSAM space that has already been allocated, you
need:

1. An AMSERV file containing the control statements necessary for
defining the cluster, and

2. The master catalog (and, perhaps, user catalog) volume, which will
point to the cluster.

The volume where the cluster is to reside does not have to be online when
you define a suballocated cluster.

For example, the file CLUSTER AMSERV contains the following:

DEFINE CLUSTER (NAME (BOOK. LIST) -
VOLUMES (123456) -
TRACKS (40) -
KEYS (14,0) RECORDSIZE (120,132).)

DATA (NAME (BOOK.LIST.DATA)) -
INDEX (NAME (BOOK.LIST.INDEX))

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 305

L .. n. __ .u __ ... n._ _ .. _•. _ _.. _n _ ... _ _ ___ n_._n ... _ ... __ ... __ ~~._ ... ~ _ _____ .. , · __ u. __ • ______ ._. ______ • __________________________ • __ .==:1

Defining a Unique Cluster

To execute this file, you would need to enter the following command
sequence (assuming that the master catalog, on volume 123456, is in your
virtual machine at address 310):

access 310 b
assgn syscat b
dlbl ijsysct b (perm syscat
amserv cluster

For a unique cluster (one defined with the UNIQUE attribute), you must
define the space for the cluster at the same time you define its name and
attributes. Therefore, the volume or volumes where the cluster is to reside
must be mounted and accessed when you execute the AMSERV command.
You can supply extent information for the cluster's data and index portions
separately.

Suppose UNIQUE AMSERV contains the following (the ellipses indicate
that the AMSERV file is not complete):

DEFINE CLUSTER -
(NAME (PAYROLL)) -
DATA (FILE (UDATA) -

UNIQUE -
VOLUMES (567890) -
CYLINDERS (40) -
. ..) -

INDEX (FILE (UINDEX)) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (10) -. ..)

To execute UNIQUE AMSERV, issue the following command sequence:

access 350 c
assgn sys004 c
dlbl udata c (extent sys004
DMSDLB331R Enter extent specifications:
800 800 c sys004
dlbl uindex c (extent sys004
600 200 c sys004
amserv unique

Deleting Clusters, Spaces, and Catalogs

When you use AMSERV to delete a VSAM cluster, the volume containing
the cluster does not have to be accessed unless the volume also contains the
catalog where the cluster is defined. In the case of data spaces and user
catalogs or the master catalog, the volume(s) must be mounted and accessed
in order to delete the space.

When you delete a cluster or a catalog, you do not need to use the DLBL
command, except to define the master catalog; AMSERV can obtain the
necessary file information from the AMSERV file.

306 VM/SP eMS for System Programming

lUlsUu~~J [\~0JSl!l-T;J [Ju lkJ ~j8[\~,!J
L_-"-- .- - -.. --. -- ... ----. ---.---. -----.------ ---.-. ---.---- -.---.----. ---.. ---------.-.----------.---------------- -~----- -.--_------=~__=__:.:..:::.__=_-::~._~~~:.:..~=:.:~ -:~_.:~~_:~:==-_==:J

When you are using temporary disks with AMSERV, you should be
particularly careful that you have not cataloged a temporary data space or
cluster in a permanent catalog. You will not be able to delete the space or
cluster from the catalog.

The REPRO, IMPORT, and E~{PORT (or E}{PORTRA/IMPORTAA) Functions

You can manipulate VSAM files in CMS with the REPRO, IMPORT, and
EXPORT functions of AMSERV. You can create VSAM files from
sequential tape or disk files (on OS, DOS, or CMS disks) using the REPRO
function. Using REPRO, you can also copy VSAM files into CMS disk files
or onto tapes. For the IMPORT/EXPORT process, you have the option (for
smaller files) of exporting VSAM files to CMS disks or to tapes.

You cannot, however, use the EXPORT function to write files onto OS or
DOS disks. Nor can you use the REPRO function to copy IS AM (indexed
sequential) files into VSAM data sets, since CMS cannot read ISAM files.

When creating a VSAM file from a non-V SAM disk file, the device track
size must be the maximum BLOCKSIZE in the INFILE statement.
AMSERV expects a DOS or OS file as input and will not open a disk file
when the BLOCKSIZE specified is greater than the track capacity of the
disk device being used.

You cannot use the ERASE or PURGE options of the EXPORT command if
you are exporting a VSAM file from a read-only disk. The export operation
succeeds, but the listing indicates an error code 184, meaning that the erase
function could not be performed.

You should not use an EXPORT DISCONNECT function from a CMS
minidisk and try to perform an IMPORT CONNECT function for that data
set onto an OS system. OS incorrectly rebuilds the data set control block
(DSCB) that indicates how much space is available.

Copying a CMS Sequential File into a VSAM File

The AMSERV file below gives an example of using the REPRO function to
copy a CMS sequential file into a VSAM file. The CMS input file must be
sorted in alphameric sequence before it can be copied into the VSAM file,
which is a keyed sequential data set (KSDS). The VSAM cluster,
NAME.LIST, is defined in an AMSERV file named PAYROLL:

DEFINE CLUSTER (NAME (NAME.LIST)
VOLUMES (CMSDEV) -
TRACKS (20) -
KEYS (14,0) -
RECORDSIZE (120,132)) -

DATA (NAME (NAME.LIST.DATA)) -
INDEX (NAME (NAME.LIST.INDEX))

To sort the CMS file, create the cluster, and copy the CMS file into it, use
the following commands:

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 307

L .. _ _ _. ___ _ n ••.• _ ___ • __ _ ___ ... _ •••• __ n_ ••• _. __ m_. _. __ •• __ n ... _. ____ __ • __________________ . ____ . _______ • _______________ • _____ . __ :1

sort name list a name sort a
DMSSRT604R Enter sort fields:
1 14
access 135 c
assgn syscat c
dlbl ijsysct c (perm syscat
amserv payroll
assgn sys006 a
dlbl sort a cms name sort (sys006
assgn sys007 c
dlbl name c dsn name list (sys007 vsam
amserv repro

The file REPRO AMSERV contains:

REPRO

EXPORTing a VSAM File to a Tape

INFILE (SORT
ENV (RECORDFORMAT (F) -

BLOCKSIZE (80) -
PDEV (3330))) -

OUTFILE (NAME)

When you use the REPRO, IMPORT, or EXPORT functions with tape files,
you must remember to use the TAPIN and TAPOUT options of the
AMSERV command. These options perform two functions:

o they allow you to specify the· device address of the tape
c they notify AMSERV to prompt you to enter a ddname

In the example below, a VSAM file is being exported to a tape. The file,
. TEXPORT AMSERV, contains:

EXPORT NAME.LIST-
INFILE (NAME) -
OUTFILE (TAPE ENV (PDEV (2400)))

To execute this AMSERV, you enter the commands as follows:

assgn sys006 c
dlbl name c (sys006 vsam
amserv texport (tapout 181
DMSAMS367R Enter tape output DDNAMEs:
tape

The f id, volid, and exdte parameters on LABELDEF are only examples.
You can substitute any value you want for them on your tape label.

308 VM/SP eMS for System Programming

Writing EXECs for AMSERV and VSAM

You may find it convenient to use EXEC procedures for most of your
AMSERV functions, as well as setting up input and output files for program
execution, and executing your VSAM programs. If, for example, a
particular AMSERV function requires several disks and a number of DLBL
statements, you can place all of the required commands in an EXEC file.

Suppose you have the following file called SETUP EXEC:

/* */
ACCESS 135 B
ACCESS 136 C
ACCESS 137 D
ACCESS 300 G
ASSGN SYSCAT G
DLBL IJSYSCT G '('PERM SYSCAT
ASSGN SYSOOI B
DLBL FILEI B DSN FIRST FILE' ('VSAM SYSOOI
ASSGN SYS002 C
DLBL FILE2 C DSN SECOND FILE' ('VSAM SYS002
ASSGN SYS003 D
DLBL FILE3 D DSN THIRD FILE' ('VSAM SYS003
AMSERV MULTFILE

To invoke this sequence of commands, enter the name of the EXEC:

setup

If you place the following statement at the beginning of the EXEC file:

signal on error

and then place the following statements at the end of the EXEC:

Error:
Say 'Unexpected return code' rc 'from command'
Say sourceline(sigl) 'at line' sigl'. I

Exit rc

you can be sure that the AMSERV command does not execute unless all of
the prior commands completed successfully.

For those AMSERV functions that issue response messages, you can use
the REXX PUSH or QUEUE instructions. For example:

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 309

L ... _. __ .. __ ... n •• " _ _. __ _ ... _._ .. _ ... _ _ ... ___________ • __ __ ._. _______ • __ ._. ______ • ____ .. ___________ •• ___ ::1

/* An exec to invoke AMSERV */
signal on error
access 305 d
assgn sys007 d
dlbl output d '('vsam sys007
labeldef tape fid file1
signal off error
push tape
amserv timport I ('tapin 181
if rc -,= 0

then type timport listing
tape rew
exit 0

Error:
Say 'Unexpected return code' rc 'from command'
Say sourceline(sigl) 'at line' sigl'.'
Exit rc

When the AMSERV command in the EXEC is executed, the request for the
tape ddname is satisfied immediately by the response stacked with the
PUSH statement.

If you are executing a command that accepts multiple response lines, you
have to stack a null line as follows:

queue c sys0021 ,I d sys003
queue
dlbl multfile b I ('mult sys001

ISAM Interface Program (liP)

eMS does not support the VSAM ISAM Interface Program (IIP). Thus, any
program that creates and accesses IS AM (indexed sequential access method)
data sets cannot be used to access VSAM key sequential data sets. There is
one exception to this restriction. You can execute VSAM I/O requests if:

1. Your as PL/I programs have files declared as ENV(INDEXED), and

2. The library routines detect that the data set being accessed is a VSAM
data set.

310 VM/SP eMS for System Programming

/'

QJsuo'afj l\~JJ~)L~~:J~ 8uu(!J VSf\~UJ
r----.---- .. ------ --- ._- .. -- --_--___ -- .. ----._ -_ ... _--_--_"-_. __ -_." _--..... .:.~~:..::.~:.:=-=.._::=.~:~:===.=.:._=_=___===_~ .. ~~===_==__=_=::J

VSE/VSAM Macros Supported

The VSE/VSAM macros and their options are supported for use in
assembler language programs under CMS/DOS. The VSE/VSAM macros
are:

ACB
BLDVRP
DLVRP
ENDREQ
ERASE

EXLST
GENCB
MODCB
POINT
RPL

SHOWCAT
SHOWCB
TCLOSE
TESTCB
WRTBFR

All options are supported with the exception of "AM=VTAM". This option
is not supported on any of the macros.

The EXLST EXCPAD exit may be specified, but it is never taken in the
CMS environment. The reason is that VSE/VSAM takes this exit when it is
waiting for I/O to complete, but in the CMS environment, I/O is always
complete when control is returned to VSE/VSAM.

In addition to the above list of macros, the following list of VSE macros
normally used with the VSAM macros are also supported. The following
macros are distributed with CMS for use with VSAM only.

VSE Macro
Supported Extent of Support
CDLOAD Only supported to the extent

required for VSAM execution.

CLOSE Supported for both VSAM and SAM.

CLOSER Supported for both VSAM and SAM.

GET Supported for both VSAM and SAM.

OPEN Supported for both VSAM and SAM.

OPENR Supported for both VSAM and SAM.

PUT Supported for both VSAM and SAM.

Obtaining the VSE/VSAM Macros

The "VSEVSAM EXEC" obtains the VSE/VSAM assembler language
macros from the VSE/VSAM Licensed Optional Machine Readable
Materials tape. The "VSESV AM EXEC" then creates a VSE/VSAM
MACLIB. To install the VSE/VSAM assembler language macros, do the
following:

1. Mount the Licensed Optional Machine Readable Materials tape on
virtual 181.

2. Load the seven VSE macros (CDLOAD, CLOSE, CLOSER, GET, OPEN,
OPENR, and PUT) from the product tape to disk (MAINT 393 is

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 311

~ nc::>Dr . ~ [,\ r\n(~[-;;C)\\r; 0'1 ·-;le;1 \\fC:' r\ r'Cl ~),~,,")UL ll[J ·,I[l\;l]l:, .. · ._.".,L~l \} LlU U\'.J \, lC.J" .\lJ\./l.

r-.---.----.-------.-.-...... -.-------------.. "-.-~ .. -.---.-... ---.-__:_---_::-----. -....... _ _._._ .. _--===_.]

recommended}. The actual disk used is not important as long as the
macros are available when VSEVSAM is issued.

3. Issue the CMS VSEVSAM command. Respond to the questions when
you are prompted.

The seven VSE macros can be erased from the disk after the MACLIB is
created because the macros will be in the MACLIB. Once you have created
the MACLIB, you are able to assemble your VSAM assembler applications
using the VSE/VSAM assembler macros in the MACLIB. The VSEVSAM
EXEC is documented in the VM/ SP Installation Guide.

VSE Supervisor Macros and Logical Transients Support for VSAM

VSE supervisor macros required by VSE/VSAM are supported by CMS. See
Figure 25 on page 237 for a complete list of supervisor macros supported.

CMS distributes the VSE transients that are needed in the VSAM support.
Thus, OS users do not need to have the VSE system pack on-line when they
are compiling and executing VSAM programs.

CMS uses all of the VSE B-transients except those that build and release
extent blocks. The extent block is not supported in CMS and, thus, neither
are the B-transients that control extent blocks.

The CMSDOS shared segment contains the B-transients that are simulated
for VSE support in CMS. The B-transients pertaining only to VSAM are
included in the VSAM saved segment. Other VSE routines required by
VSE/VSAM are contained in the CMSBAM shared segment. This includes
the common VTOC handler routines, SAM data management, and the
VSAM look-aside function.

OS/VSAM Macros Supported in eMS

A subset of the OS/VSAM macros are supported for use in CMS. The
macros are at an MVS 3.8 level and they are contained in the OSVSAM
MACLIB that is shipped with VM/SP. The macros are:

ACB
CHECK
ENDREQ
ERASE

EXLST
GENCB
MODCB
POINT

RPL
SHOWCB
TESTCB

Some options of the OS/VSAM macros do not work in CMS because
OS/VSAM macro requests are executed using VSE/VSAM code. Figure 34
lists the OS/VSAM macros and the supported options.

312 VMjSP eMS for System Programming

/

OS/VSAM IVlacro

ACB

CHECK

ENDREQ

ERASE

EXLST

GENCB BLK=ACB

GENCB BLK=EXLST

GENCB BLK=RPL

Supporteu Options

AM=VSAM
BUFND = number
BUFNI = number
BUFSP = number
DDNAME = ddname
MACRF=ADR, CNV, KEY, NOF,
DIR, SEQ, SKP, IN, OUT,
NRMIAIX, NRSIRST, NSR, NUB1UBF,

RPL = address

RPL = address

RPL = address

AM=VSAM
EODAD = address
JRNAD = address
LERAD = address
SYNAD = address

EXLST = address
BUFND=number
BUFNI = number
BUFSP = number
COPIES = number
DDNAME = ddname
MACRF=ADR, CNV, KEY, NOF,
DIR, SEQ, SKP, IN, OUT,
NRMIAIX, NRSIRST, NSR, NUBIUBF,

EODAD = address
JRNAD = address
LERAD = address
SYNAD = address

ACB = address
AREA = address
AREALEN = number
ARG = address
COPIES = number
OPTCD =ADRICNVIKEY,
DIRlsEQISKP, AROILRD,
FwoIBWD, ASYlsYN,
NSPINUpIUPD, KEQIKGE,
~KsIGEN, LOCIMVE,

EXLST = address
MAREA = address
MLEN = number
P ASSWD = address
STRNO=number

LENGTH = number
MAREA = address
MLEN=number
P ASSWD = address
STRNO=number
W AREA = address

COPIES = number
LENGTH = number
W AREA = address

ECB = address
KEYLEN = number
LENGTH = number
NXTRPL = address
RECLEN = number
WAREA~number

Figure 34 (Part 1 of 3). Options of OS/VSAM Macros Supported in eMS

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 313

L __ . _______ _ _ _____________ ==:J

OS/VSAM Macro Supported Options

GET RPL = address

MODCBACB BUFND=number EXLST = address
BUFNI = number MAREA = address
BUFSP = number MLEN = address
DDNAME = ddname P ASSWD = address
MACRF=ADR, CNV, KEY, NDF, STRNO=number
DIR, SEQ, SKP, IN, OUT,
NRMIAIX, NRSIRST, NSR,
NUBIUBF,

MODCB EXLST EODAD = address
JRNAD = address
LERAD = address
SYNAD = address

MODCBRPL ACB = address ECB = address
AREA = address KEYLEN = number
AREALEN = number NXTRPL = address
ARG = address RECLEN = number
OPTCD =ADRICNVIKEY,
DIRISEQISKP, ARDILRD,
FWDIBWD, ASYISYN,
NSPINUPIUPD, KEQIKGE,
FKSIGEN, LOCIMVE

POINT RPL = address

RPL ACB = address ARG = address
AM=VSAM ECB = address
AREA = address KEYLEN=number
AREALEN = number NXTRPL = address
OPTCD=ADRICNVIKEY, RECLEN = number
DIRlsEOISKP, ARDILRD,
FWDIBWD, ASYISYN,
NSPINUpIUPD, KEOIKGE,
FKSIGEN, LOCIMVE,

SHOWCBACB AREA = address OBJECT = DATAIINDEX
FIELDS = ACBLEN, AVSPAC, LENGTH = number
BUFND, BUFNI, BUFNO,
BUFSP, CINV, DDNAME,
ERROR, EXLST, FS, KEYLEN,
LRECL, MAREA, MLEN, NCIS,
NDELR, NEXCP, NEXT, NINSR,
NIXL, NLOGR, NRETR, NSSS,
NUPDR, PASSWD, RKP, STMST,
STRMAX, STRNO

SHOWCB EXLST AREA = address LENGTH = number

Figure 34 (Part 2 of 3). Options of OS/VSAM Macros Supported in eMS

314 VM/SP eMS for System Programming

[----_._-----_._. __ ._--------------------_. -------.--_ .. __ . __ ... _--_.-

OS/VSAM Macro

SHOWCBRPL

TESTCB ACB

TESTCB EXLST

TESTCB RPL

Supported Options

FIELDS = EODAD, EXLLEN,
JRNAD,LERAD,SYNAD

AREA = address
FIELDS=ACB, AIXPC, AREA,
AREALEN,ARG,ECB,FDBK,
FTNCD, KEYLEN, NXTRPL,
RBA,RECLEN, RPLLEN

ERET = address
OBJECT = DATAl INDEX
ATRB=UNQ
OFLAGS = OPEN
OPENOBJ = PATHIBASEIAIX
ACBLEN = number
AVSPAC=number
BUFND=number
BUFNI = number
BUFNO=number
BUFSP = number
CINV = number
DDNAME = ddname
ERROR = number
EXLST = address
FS=number
KEYLEN = number
ATRB=ESDS, KSDS, REPL,
RRDS, SPAN, SSWD, WCK

ERET = address
EODAD = address
JRNAD = address

ERET = address
AIXFLAG = AIXPKP
AIXPC=number
FTNCD = number
I/O = COMPLETE
ACB = address
AREA = address
AREALEN = number
OPTCD=ADR, ARD, ASY, BWD,
CNV, DIR, FKS, FWD, GEN,
KEQ, KEY, KGE, LOC, LRD,
MVE, NSP, NUP, SEQ, SKP, SYN,
UPD

LENGTH = number

LRECL = number
MAREA = address
MLEN = number
NelS = number
NDELR = number
NEXCP = number
NEXT = number
NINSR = number
NIXL = number
NLOGR=number
NRETR=number
NSSS = number
NUPDR=number
P ASSWD = address
RKP=number
STMST = address
STRNO=number
MACRF= ADR, AIX,
CNV, DIR, IN, KEY,
NDF, NRM, NRS, NSR,
NUB, OUT, RST, SEQ,
SKP,UBF

LERAD = address
SYNAD = address
EXLLEN=number

ARG = address
ECB = address
FDBK = number
KEYLEN = number
NXTRPL = address
RBA=number
RECLEN = number
RPLLEN = number

Figure 34 (Part 3 of3). Options of OS/VSAM Macros Supported in eMS

- ----,

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 315

~1J D 0 uu Cj f\ L0J 8 [E L;~ V ElfJ'u c~ \f ~~ f':. ~tfJ
[~-==:::-=.::::==:::.== ____ ._. __ . __ . ______________ . ____ . ___ . ___ ._: .. _____________________________ ===::::J

OS/VSAM Error Codes

Error codes returned by VSE/VSAM in response to OPEN, CLOSE, and
Data Management Request macro errors are mapped to the appropriate
OS/VSAM error codes.

• Figure 35 lists the error codes returned by VSE/VSAM in response to
OPEN errors.

• Figure 36 on page 318 lists the error codes returned by VSE/VSAM in
response to CLOSE errors.

o Figure 37 on page 319 lists the error codes returned by VSE/VSAM in
response to Data Management Request macro errors.

If a VSE/VSAM error code cannot be mapped to any OS/VSAM error code,
a CMS error message and an ABEND 35 are issued except for the cases
indicated by an "*".

The following table lists the VSE/VSAM to OS/VSAM error code mapping
for OPEN errors:

CIV1S Error
IVlessage or

VSEjVSAI\(I OSjVSAM VSEjVSAlVl OSjVSAM
Error Error Return Return
Code Code Code Code

2 DMSVIP779E 8 8

4 4 8 8

14 DMSVIP782E 8 8

15 DMSVIP782E 8 8

17 DMSVIP782E 8 8

18 DMSVIP782E 8 8

19 DMSVIP782E 8 8

32 DMSVIP782E 8 8

34 DMSVIP782E* 8 8

40 DMSVIP778E 8 8

48 168 8 8

50 DMSVIP782E 8 8

64 188 8 8

65 DMSVIP779E 8 8

66 DMSVIP782E 8 8

67 DMSVIP782E 8 8

Figure 35 (Part 1 of 3). VSE/VSAM to OS/VSAM Error and Return Code
Mapping for OPEN Errors

316 VM/SP eMS for System Programming

r-·-----·---------- ----------.----.---- ----. --- ... -... -------.-- .-...... -... -.. -.. "- --.- -----... -.. ---. --.----.. --- --.. ------.----.- .. --.------.. -.. -... - -J

CMS Error
Message or

VSE/VSAIVI OS/VSAM VSE/VSAM OS/VSAM
Error Error Return Return
Code Code Code Code

68 168 8 8

69 DMSVIP782E 8 8

70 DMSVIP782E 8 8

71 DMSVIP782E 8 8

72 148 8 8

78 DMSVIP782E 8 8

79 DMSVIP782E 8 8

80 DMSVIP778E 8 8

92 DMSVIP779E 8 8

96 96 4 4

100 100 4 4

104 104 4 4

108 108 4 4

110 160 8 8

113 144 0 4

114 DMSVIP781E 0 4

115 DMSVIP781E 8 8

116 116 4 4

117 DMSVIP782E 8 8

118 0 0 0

128 128 8 8

132 132 8 8

136 136 8 8

144 144 8 8

148 148 8 8

152 152 8 8

160 160 8 8

161 160 8 8

165 DMSVIP782E 8 8

166 DMSVIP782E '8 8

167 DMSVIP782E 8 8

168 168 8 8

180 180 8 8

188 DMSVIP782E 8 8

Figure 35 (Part 2 of 3). VSE/VSAM to OS/VSAM Error and Return Code
Mapping for OPEN Errors

Chapter 10. Using Access Method Services and VSAM under CMS and eMS/DOS 317

l'J8Dul1~ AM8[E~V c.Hi)(~ V§AM
c---'--- _____ :::J

CMS Error
Message or

VSE/VSAM OS/VSAIVI VSE/VSAIVI OS/VSAIVI
Error Error Return Return
Code Code Code Code

192 192 8 8

196 196 8 8

212 212 8 8

216 216 8 8

220 220 8 8

228 228 8 8

232 232 8 8

248 DMSVIP782E 8 8

254 DMSVIP782E 8 8

255 144 8 8

Figure 35 (Part 3 of 3). VSE/VSAM to OS/VSAM Error and Return Code
Mapping for OPEN Errors

The following table lists the VSE/VSAM to OS/VSAM error code mapping
for CLOSE errors:

C:M:S Error
Message or

VSE/VSAM OS/VSAM VSE/VSAM OS/VSAM
Error Error Return Return
Code Code Code Code

2 DMSVIP783E non-zero 4

4 4 non-zero 4

76 DMSVIP784 non-zero 4

136 136 non-zero 4

144 144 non-zero 4

165 DMSVIP784 non-zero 4

166 DMSVIP784 non-zero 4

167 DMSVIP784 non-zero 4

184 184 non-zero 4

188 0 non-zero 4

228 DMSVIP783 non-zero 4

252 DMSVIP784 non-zero 4

254 DMSVIP784 non-zero 4

255 148 non-zero 4

Figure 36. VSE/VSAM to OS/VSAM Error and Return Code Mapping for
CLOSE Errors

318 VM/SP eMS for System Programming

For Data Management Request errors, all VSE/VSAM error codes are
returned to the OS/VSAM user since the VSE/VSAM and OS/VSAM error
codes are equivalent, with the following exceptions:

eMS Error
Message or

VSE/VSAlVI OS/VSAM VSE/VSAr/l OS/VSAIVl
Error Error Return Return
Code Code Code Code

32 DMSVIP785E 0 0

48 40 8 8

52 Abend 52* 8 8

56 Abend 56* 8 8

128 DMSVIP786E 8 8

208 DMSVIP786E 8 8

212 DMSVIP786E 8 8

216 DMSVIP785E 8 8

Figure 37. DATA Management Request Error Return Code Mapping

Hardware De"ices Supported

eMS support of VSAM data sets is based on VSE/VSAM. In its support of
VSAM data sets, eMS uses RPS (rotational position sensing) wherever
possible. eMS does not use RPS for 2314/2319 devices or for 3340 devices
that do not have the feature. Except for the 3380, only disks supported by
VSE can be used for VSAM data sets in eMS. These disks are:

o IBM 2314 Direct Access Storage Facility
o IBM 2319 Disk Storage
o IBM 3310 Direct Access Storage
o IBM 3330 Disk Storage, Models 1 and 2
o IBM 3330 Disk Storage, Model 11
o IBM 3340 Direct Access Storage Facility
o IBM 3344 Direct Access Storage
Q IBM 3350 Direct Access Storage
o IBM 3370 Direct Access Storage, Models AI, A2, B1, and B2
Q IBM 3375 Direct Access Storage
Q IBM 3380 Direct Access Storage

eMS disk files used as input to or output from Access Method Services may
reside on any disk supported by eMS.

Chapter 10. Using Access Method Services and VSAM under CMS and CMS/DOS 319

__ =:J

/'

320 VM/SP eMS for System Programming

Saving the eMS System

Only named systems can be saved. The NAMESYS macro must be used to
name a system. A discussion on creating a named system is found in the
VM/ SP Planning Guide and Reference.

The DMKSNT file must have been configured (by coding the NAMESYS
macro) when CP was generated. The DMKSNT file contains the system
name, size of the system, and its real disk location. The CMS system may
be saved by:

o Providing a positive response to the following message (message 729R):

Do you want to save the system? (enter l=YES or O=NO)

o Modifying the DEFNUC MACRO to include a positive response to the
SA VESYS parameter, or

o Issuing the IPL command with the "SA VESYS systemname" parameter.

The "systemname" is the name assigned to the saved system. This is the
same system name specified in the DMKSNT file.

The CMS S-disk must be mounted and attached to the virtual machine
creating the saved system before the SA VESYS function is invoked. This
ensures that CMS file directories are saved correctly. However, in addition
to the S-disk, you need the Y-disk to save the shared Y-disk directory.

Note: Any updates to the CMS S-disk or Y-disk require saving the CMS
system again.

In VM/SP, the CMS system is designed to be used as a saved system. Its
location may be modified by an installation for its particular requirements
but should be shared among CMS users.

Chapter 11. Tailoring Your CMS System 321

IT1

E)U ~Q)~~u~uqJ V Q~~%~ CL{~8 817s~emru
r:====-.~=~:-:-_~-.~.=:::~.~.'~-:::-.~~_:='~.~:_-:: .. ':'~~::'-~==-=~ __ .: ________ ._ ___ . ___________ . ___ . _______ ... _ .. _______ .. _______ ___ ... _________ ._ .. __ . ____ .. _._. ___ . ___ .. ____ .__ :oJ

Saved System Restrictions for eMS

Several coding restrictions must be imposed on CMS if it is to run as a
saved system.

If the key specified in the CAW for a SIO instruction is zero, the data area
for input may not cross the boundary between two pages with different
storage keys.

If you intend to modify a shared CMS system, be sure that all code that is
shared resides in the shared segments of the CMS nucleus. You can use the
USERSECT area of DMSNUC to contain nonshared instructions.

If you want to have a system profile EXEC, or if you want to use the
NOSPROF, INSTSEG, or SA VESYS parameters of the IPL command, you
must have:

PARMRGS=(O,15)

in the NAMESYS macro for the CMS named system.

I Using the System Profile, SYSPROF EXEC, for Tailoring

V'Jhat the System Profile Does

The system profile is an EXEC that performs some of the CMS initialization
function previously done in a module. You, the system programmer, can
tailor the CMS environment that users see at initialization time by
modifying this EXEC. You can do such things as access additional system
disks or bring up application programs automatically. Decisions on
tailoring the environment can be made on the basis of userid, responses to
prompting, CMS parameters on the IPL command, or any other conditions
defined by your installation.

You can also bypass the system profile. The system profile is not meant to
force users into an environment. Instead, it enables you to change the
default CMS environment established by DMSINS without modifying a
CMS module and rebuilding CMS. You can modify the EXEC to make it as
secure as your installation requires.

The CMS initialization module, DMSINS, calls SYSPROF EXEC and
executes it from a DCSS (discontiguous shared segment) or the system disk
or the system disk extension. This is done before any user disks are
accessed. When you enter the IPL CMS command, SYSPROF EXEC is
executed unless you:

• Specify the NOSPROF parameter on the command line, or

o IPL a non-DASD virtual device, such as a reader, or

322 VM/SP eMS for System Programming

,/

<f8a~(Q)u~nu-utJ v @l!Ju~ c~)jJ8 8ys'~Guuu
c-------·-·.--·.-.--.-· .. -------.----------------·-----.---~----- .. -.---.--- -.---.-...... ---.... -.--.. --.--.. -.- -.. - .. --------.-.-.-..... -- .. - .. - - - -.-.-.---.. -- -.---------~--.-.::::J

System Profile Functions

o Do not have SYSPROF EXEC in the CMS search order.

The default SYSPROF EXEC creates an environment similar to the one
DMSINS creates.

The default SYSPROF EXEC performs the following functions:

o Processes the parameters passed on the IPL command

o Displays the CMS system identification (system ID)

o Issues the initial console read

o Handles the first command entered at this read

o Accesses the 191 disk as the A-disk

o Accesses the 192 disk as the D-disk

o Issues the S-STAT/Y-STAT messages

o Issues other initialization related messages

o Executes the PROFILE EXEC if the user has one

If a protected user drops into CP, CP automatically re-IPLs. Information
indicating the nature of the problem is passed to SYSPROF EXEC.
SYSPROF EXEC displays a message when one of these conditions is found.
However, by modifying the EXEC, you may choose to take different action,
such as sending a message to an administrator.

You can also modify the SYSPROF EXEC to tailor your system to the
requirements of your installation. For additional information on tailoring
your system, see the VM/SP CMS User's Guide.

InvoIcing the IPL eMS Command

You can put the IPL CMS command in your directory entry or issue it after
you log on. The IPL command has a P ARM keyword marking the start of
any CMS parameters. These parameters may be up to 64 bytes of data
(excluding all leading blank characters after the keyword, PARM, but
including all other embedded and trailing blanks).

Note: If you are IPLing a non-DASD device, such as a reader, all CMS
parameters are ignored.

All parameters following the P ARM keyword, except the SA VESYS
parameter, are passed to SYSPROF EXEC. When a valid SA VESYS
parameter is encountered (refer to the IPL command section in the VM/ SP
CP Command Reference), an attempt is made to save the system, and the

Chapter 11. Tailoring Your CMS System 323

t._. - "- .. ,, --......... ------- --- .. -.-- -~

SA VESYS parameter is cleared. When an invalid SA VESYS parameter is
encountered, all parameters are ignored. However, they are available to
SYSPROF EXEC. DMSINS ignores any unrecognized parameters, but you
can modify SYSPROF EXEC to recognize them.

To properly use the system profile and the new CMS parameters,
PARMRGS= (0,15) must be coded in the NAMESYS macro for the CMS
named system.

The CMS Parameters on the IPL Command

The format of the CMS parameters on the IPL command is:

IPL

where:

vaddr [p ARM [SA VESYS sysname]]
sysname

(For other CMS parameters and any CP parameters, refer to the VM/ SP CP
Command Reference.)

vaddr
is the virtual address (cuu) of the device containing the nucleus to be
loaded. If vaddr is the address of a non-DASD virtual device, such as
a virtual reader, any parameters specified after the P ARM operand are
ignored.

sysname
is the name of a system previously saved by the SA VESYS command
or parameter.

PARM
is a CP keyword. CP passes up to 64 bytes of data (excluding all
leading blank characters after the keyword, P ARM, but including all
other embedded and trailing blanks) to your virtual machine's general
registers (4 bytes per register). For IPL of a virtual device, the
movement begins with the high order byte of general register o. For a
named system, the place and length of movement is determined by the
PARMRGS option specified in the NAMESYS entry.

SA VESYS sysname
is used in the process of creating named systems. It saves a virtual
machine storage space with registers and PSW as ~hey currently exist.
sysname must be a predefined name representing a definition of
installation requirements of the named system. The definition
indicates the number of pages to be saved, the DASD volume on which
the system is to be saved, and the shared segments, if any. You must
have the CP privilege class (class E) to issue the CP SA VESYS /
command.

324 VM/SP eMS for System Programming

tU"~lU~()G'UuuO ~16~%~ GhtfJS SyG'UGu"uu
r--.-m

•••••• --- ••. - ••••••••••••••••• --.- - •• - •• - --~---- •• - -- -.-- •• - ••• ----:...=~~:----.~-.. -... =-~--- --..... --.--.-.----- .. ~ ... -.~==-~=-====--==-==------==-=-]

After the system is saved, initialization continues, all CMS parameters
entered on the IPL command are ignored, and SYSPROF EXEC is
executed. The parameters entered on the original IPL command are
not passed to SYSPROF EXEC.

No other parameters may be specified with this parameter. If any
other parameters are specified, all parameters are ignored and a
CONFLICT parameter is passed to SYSPROF EXEC, as well as the
parameters entered on the IPL command.

How to Save a Named System

You must have the CP privilege class (class E) to issue the SA VESYS
command. To save a named system, you can either:

o provide a positive response to the following message (message 729R),

Do you want to save the system? (enter l=YES or rr=NO)

or

o enter the SA VESYS parameter in the P ARM field of the IPL command.

If you specify the SA VESYS parameter on the IPL command, you should
not specify any other parameters. If any other parameters are specified,
they are all ignored but they are available to SYSPROF EXEC, and the
system won't be saved.

How to Create or Change SVSPROF EXEC

VM/SP provides a default SYSPROF EXEC that may reside in a DCSS
(discontiguous shared segment) or on the system disk or system disk
extension. If it resides ona system disk, it must have a filemode of 2. For
better performance, SYSPROF EXEC should reside in a DCSS. However, if
it resides in a DCSS and a user IPLs with INSTSEG NO, SYSPROF EXEC
is not invoked unless a copy also resides on the system disk or system disk
extension.

The system profile is shipped as a SYSPROF $EXEC file. SYSPROF $EXEC
is a fixed format file with a logical record length of 80. To change
SYSPROF EXEC, edit the SYSPROF $EXEC file using the System Product
Editor (XEDIT) with the UPDATE option. After making changes, use the
EXECUPDT command with the SID option to apply the updates to the
$EXEC file and to generate the updated SYSPROF EXEC.

If the EXEC resides on a system disk, it can be changed by anyone who has
write access to that disk. Once the EXEC has been modified~ if the system
is to be IPLed as a named system, or if the S-STAT or Y-STAT capability is
to be available, the system must be resaved. If the EXEC resides in a
DCSS, the administrator must follow documented procedures for rebuilding
and saving the DCSS after making changes to the EXEC. In any case, all
users currently logged on must re-IPL the system or unpredictable results

Chapter 11. Tailoring Your CMS System 325

L_" ____ ._ ... ______________________ . ___________ " _____ _ " _______ " ___ " _____ . ___ ,, __ .. _ .. _____ . __ ._",,_. ___ . ____ J

Parameter

AUTOCR

BATCH

NOSSTAT

NOYSTAT

ACCD

FORM

NOWM iucv-rc

SAVERR

CONFLICT

INSEGERI

INSEGER2

X'FF'

CMSERROR

DW AITPSW psw

EXTINTLP psw

PAGERROR

PRGINTLP psw

occur. Therefore, it is recommended that any logic in SYSPROF EXEC
that changes frequently should

o Be put in another EXEC that is called by the system profile, and

o Placed on a disk other than the S- or Y-disks.

Modifications to EXECs that reside on other disks do not necessitate the
resaying of the system and re-IPL by all users. However, in SYSPROF
EXEC, you must remember to access the disks these EXECs reside on.

The following table lists the parameters that may be passed to SYSPROF
EXEC:

Meaning

AUTOCR parameter specified on IPL command

BATCH parameter specified on IPL command

S-ST ATs are unavailable

Y-STATs are unavailable

Go ahead and try to access the D-disk

D-disk has already been formatted by DMSINS

IUCV failed, with return code iucv-rc,
windowing can't be started

SA VESYS specified without system name

SAVESYS specified with other parameters

INSTSEG value is missing and no shared EXECs are
loaded.

The Installation DCSS could not be loaded.

Delimiter for CP restart information

CP entered; Information unavailable

CP entered; Disabled wait PSW 'psw'

CP entered; External interrupt loop

CP entered; Paging error

CP entered; Program interrupt loop

SPAGEALT sname hexloc CP entered; sname shared page hexloc altered

TRANEXCP CP entered; Translation exception: While in non-EC
mode

NOTREIPL This was not an automatic re-IPL

X'FF' Delimiter for CMS system ID

32 character string CMS system ID

X'FF' Delimiter for CMS parameters on IPL command

IPL parms Data entered in PARM field of IPL command

Figure 38. Parameters Passed to SYSPROF EXEC

326 VM/SP eMS for System Programming

/"

/'

"u·~oa~ou,JnG·][J VO~ju" ((~~)jJ8 Sy~3'~Gnuu
[.-.-- .-._.---.-.... ..- .---- -... --_~=_:...:._..:..:::....::.=_==~==.~~~..::.~:.::~~:....:....:.:.=~:~::..==~=====~~===_:..=:.:_:..:~_==~~:.:_==:::_=. __ =:"-::=~:=J

Some of these parameters cause messages to be displayed. You can modify
SYSPROF EXEC to take further action when one of these parameters is
found or to ignore these parameters completely.

When CP re-IPLs, it passes restart information to SYSPROF EXEC. This
information indicates the nature of the problem. The default system profile
issues a warning message when it finds this information. However, you can
modify the EXEC to take different action.

How to Bypass the System Profile

To bypass the system profile, you can specify the NOSPROF parameter in
the PARM field of the IPL command or IPL a non-DASD device.

If no SYSPROF EXEC exists, DMSINS performs CMS initialization. A
warning message is displayed to notify the user of this condition.

Setting Up a Protected Application Environment

For users interested in only using application programs, it is possible to
build a protected application environment. A protected user is
automatically placed in their application environment at logon time and
prevented from inadvertently dropping into CPo To set up this type of
environment, you (the system programmer) should use the CONCEAL entry
on the OPTION control statement in the user's directory. This prevents
entry into CP by errors.

You should tailor SYSPROF EXEC, or any of the EXECs that it calls, to set
up the proper application environment for the user. This environment can
be set up based on userids, parameters passed in the P ARM field of the IPL
command, or any other function. Tailoring can range from simply
accessing additional disks to suppressing normal CMS initialization
messages and completely tailoring an application environment.

You should decide what degree of protection is required to make this
environment. For example, you may want to turn off the CMS immediate
commands such as HX, HI, and TS, for the duration of SYSPROF EXEC.
However, keep in mind that since this must be done within SYSPROF
EXEC, there is a short period of time where the user may type in one of
these immediate commands during CMS initialization.

If the protected user drops into CP, CP re-IPLs. Information indicating the
nature of the problem is passed to SYSPROF EXEC. Based upon the user
and the reason for entry into CP, you may want to take action. For
example, you may want to inform the system administrator.

Chapter 11. Tailoring Your CMS System 327

What the System Profile Can Do for Installations

The system profile can set up several environments on a single system.
Here are some examples of functions that can be done with SYSPROF
EXEC at initialization time:

• New parameters can be recognized in the P ARM field of the IPL
command. For example, you can add the following IPL statement in a
user's directory:

IPL eMS PARM PROFS

Since this is an unrecognized parameter, it would be ignored by
DMSINS and passed to SYSPROF EXEC. Then, this parameter can be
recognized and PROFS can be set up for the particular user. By
recognizing several parameters, different environments can be tailored.

o Additiqnal system disks can be accessed, or some defaults currently
provided can be changed.

• Specific users or groups of users can be recognized and placed into an
application or other environment.

o The initial console read can be suppressed, or the default can be
changed to AUTOCR.

• Novice users can be prompted for information.

o Certain system messages, such as the CMS system ID, can be suppressed
or overridden to hide the complexity of the system.

• Installations can decide for themselves how to handle conditions where
protected users enter CP and are re-IPLed. For example, a message can
be sent to the system administrator.

For additional information on the system profile see the VMI SP CP
Command Reference and VMISP Installation Guide.

Sharing File Directory Information

The SA VEFD command allows you to place file directory information for a
shared, extended data format (EDF) RIO minidisk into a discontiguous
shared segment (DCSS). The DCSS is then available to users who access
the disk RIO. Placing the mini disk directory information in shared storage
helps to reduce your working set and the system paging rate and response
time.

328 VM/SP eMS for System Programming

,/

'i~1U~DG'D~)0 '~J~JQJ~" (!.:;~IJJS ~)yG'~(~ulJll
L._~. ___ .~_: __ . __ . ___ , __ . ________ . ___ .~_~ __ ~~ __ ~ ____ ":~ ____ ':'::_""':"~:"":::'~_" _' _.....:..~~ __ ~:::. _..:-.-:::~~:-.:~~~_:::..._~:.-:::_-. _~:.=.=:::.-::-=_-=~:==~-.-=-:..:::.-===:~.~

The SAVEFD Command

SA VEFD performs the following tasks:

o The label record of the minidisk is updated with the name of the DCSS
containing the file information.

o The hyperblock map and complete set of file status tables (FSTs) for the
minidisk are placed into the DCSS.

o An ADT image is placed into the DCSS. When you access the minidisk,
the ADT image is copied into nonshared storage, thereby picking up the
information it contained exactly as CMS originally built it. Several
fields in the ADT are then updated as part of ACCESS processing.

The format of the SA VEFD command is:

SAVEFD
{

INIT vdev label segname }
SAVE vdev label segname
NOSA VE vdev label

where:

INIT
initializes the disk for a subsequent SA VEFD command. It accesses a
disk and writes the segment name on the disk label record.

SAVE
saves the file directory information in a DCSS. It accesses a disk;
builds the ADT, FST hyperblocks, hypermap, and a SFD header in a
DCSS address range; and issues a SA VESYS for the segment.

NOSAVE

vdev

label

disables the saved storage access. It accesses a disk and clears the
segment name on the disk label record.

is the address of the disk for which saved file status table blocks
(FSTBs) are to be built (the disk must be linked R/W).

is a eMS minidisk label.

segname
is the name of the shared segment.

Chapter 11. Tailoring Your CMS System 329

.. _ _ _._._ .. ___ .. __ ._._ .. __ ._ ... __ ___ . ___________ .. ____ n_. _____ J

Putting File Directory Information into Shared Storage

Usage Notes

To put file directory information into shared storage, follow these steps:

1. Define the segment name in DMKSNT, and rebuild CPo For details on
defining segment names in DMKSNT, see the VM/SP Planning Guide
and Reference. For details on rebuilding CP, see the VM/SP
Installation Guide.

2. Issue 'SA VEFD INIT' to write the segment name on the disk label
record.

3. Issue 'SA VEFD SAVE' to save the FSTs in the segment.

Note: Every time you update a SA VEFD minidisk, you must res ave it
by issuing 'SA VEFD SAVE'. You do not have to issue 'SA VEFD INIT'
if there is no change in the segment name.

1. Conventional data format (CDF) disks are not supported. If you use
SA VEFD to process a CDF disk, the command terminates with a
diagnostic message (DMSSFD260E).

2. To decide how big the segment should be for a SA VEFD minidisk, the
following considerations should be made:

o Each segment size is a multiple of 64K.

o Each FST consists of 64 bytes; therefore, the number of FSTs in the
disk is multiplied by 64.

o Extra storage is needed for the SFD header, ADT, and hypermap.

Each 64K segment may contain approximately 1000 files of file directory
information.

3. To issue 'SA VEFD SAVE', you must be authorized to perform the
SA VESYS operation.

4. When you make a change to a SA VEFD minidisk, CMS automatically
updates the FST directory date/time stamp. Therefore, the date/time
stamp of the FST directory of the SA VEFD minidisk and the date/time
stamp in the SFD header in the DeSS are different. If other users
access this SA VEFD minidisk now, they have nonsaved access. You
should not access the disk as R/W unless you are updating and saving
the directory information in the DeSS. After the changes are made,
reissue the SA VEFD command to allow saved access again. The
SA VEFD command accesses the disk as R/W.

5. The size of your virtual storage cannot be greater than the address of
the DeSS where the FSTs are saved.

330 VM/SP eMS for System Programming

~fC1u~orrOu'tl~ V lOUJrI ~~VJS Sy5'~0u~uU
c-------h-.-.. ---.--.... --- _._._ .. _.' _ _._ ... _____ ._. ________________ . ____________ . __ . ______ n __ .•• _ __ . _____ • ____ • __ • __ . ____ .]

6. The SA VEFD command accesses the SA VEFD minidisk as a Z-disk.
Therefore, any disk accessed as a Z-disk is released when SA VEFD is
issued.

7. Auxiliary directories are not supported on disks for a saved storage
access. You should not use SA VEFD on disks that use auxiliary
directories. For details, see "Chapter 13. Using Auxiliary Directories"
on page 339.

Messages and Return Codes

DMSSFD014E
DMSSFD017E
DMSSFD047E
DMSSFD050E
DMSSFD070E
DMSSFD109S
DMSSFD126S

DMSSFD260E
DMSSFD283E

DMSSFD286E
DMSSFD288I
DMSSFD401S

DMSSFD653E
DMSSFD1074S
DMSSFD1075E

DMSSFD1076E

DMSSFD1077E

Invalid function function [RC = 24]
Invalid device address vdev [RC = 24]
No function specified [RC = 24]
Parameter missing after value [RC = 24]
Invalid parameter parameter [RC = 24]
Insufficient free storage available [RC = 41]
Error {readingJwriting} label on disk mode(vdev)
[RC = 100]
Disk not properly formatted for SAVEFD [RC = 16]
The name DCSS could not be {foundJloadedJsaved}; return
code rc from {FINDSYSJLOADSYSJSA VESYS} [RC = 128]
The DCSS is too small for the data being stored [RC = 40]
dcssname DCSS not saved
VM size cannot exceed segment start address (hex address)
[RC=40]
Error executing command, rc = nn [RC = 40]
Disk not linked as RjW [RC = 36]
Label on disk label and label on command label do not
match [RC = 24]
Segment name in disk label segname and segment name on
command segname do not match [RC = 24]
Disk has not been initialized by SA VEFD INIT [RC = 40]

Sharing E}(IECs and IEdiior Macros

You can place frequently used EXECs and Editor macros into a
discontiguous shared segment (DCSS). This allows multiple users to share
the same executing copy of the EXECs and Editor macros. The DCSSGEN
command builds, loads, and saves the DCSS.

For more information, see the procedure for installing the CMSINST
segment in the VMjSP Installation Guide.

Chapter 11. Tailoring Your CMS System 331

r:TI~@D~@~~DuuW \{@n.nu1 eMS 8VG~QGuu
(---===--=-~=--=~-=---=-=--==------------- _._. ______ . ___ .. _. ____ .. ___ ... _. _ .. _._._-_._. __ ._-_ ... _ _. __ . __ _ .. _J

332 VM/SP eMS for System Programming

,-' _. __ ._ ... _- - . __ .. '- '-- -..... ---.-- -_ .•.. __ .. _._._-- .. -----.-.. -.-- .. -.---•.. --. -- .. _ .. _. __ ._- --- .•.. _--_ __ .-.. _-_ ..• _-------_ -_ .•. _ ... --_ .. _ .. _ ...•. _--_ .. _.- ._ ...•.. ---.-•...• ---.... _--_ ... _. __ .. __ _ .•.. _-

The CMS Batch Facility is a VM/SP programming facility that runs under
the CMS subsystem. It allows VM/SP users to run their jobs in batch mode
by sending jobs either from their virtual machines or through the real
(system) card reader to a virtual machine dedicated to running batch jobs.
The CMS Batch Facility then executes these jobs freeing user machines for
other uses.

If both the CMS Batch Facility and the Remote Spooling Communications
Subsystem Networking Version 2 (RSCS) are being executed under the same
VM/SP system, job input streams can be transmitted to the batch facility
from remote stations via communication lines. Also, the output of the
batch processing can be transmitted back to the remote station.

The CMS Batch Facility virtual machine is generated and controlled on a
userid dedicated to execution of jobs in batch mode. The system operator
generates the "batch machine" either by:

1. Entering the ,BATCH parameter in the P ARM field of the IPL command,
or

2. Specifying the NOSPROF parameter and entering CMSBATCH during
VMREAD.

The CMSBATCH module loads the DMSBTP TEXT S2 file, which is the
actual batch processor. After each job is executed, the batch facility IPLs
itself, thereby providing a continuously processing batch machine. The
batch processor IPLs itself by using the P ARM option of the CP IPL
command followed by a character string that CMS recognizes as peculiar to
a batch virtual machine performing its IPL. Jobs are sent to the batch
machine's virtual card reader from users' terminals and executed
sequentially. When there are no jobs waiting for execution, the CMS Batch
Facility remains in a wait state ready to execute a user job. See the
VM/SP Operator's Guide for more information about controlling the batch
machine.

The CMS Batch Facility is particularly useful for compute-bound jobs such
as assemblies and compilations and for execution of large user programs,
since interactive users can continue working at their terminals while their
time-consuming jobs are run in another virtual machine.

The system programmer controls the batch facility virt~al machine
environment by resetting the CMS Batch Facility machine's system limits,
by writing routines that handle special installation input to the batch

Chapter 12. Using the eMS Batch Facility 333

CMS []@li~~u ~o~n~n~17
L ___ -====-=-=:---- __________ --::J

facility, and by writing EXEC procedures that make the CMS Batch
Facility easier to use.

Installing the eMS Batch Machine

Before using the CMS Batch Facility, an entry must exist in the user's
directory. This entry specifies the userid of the CMS batch machine.

Following is an example of a user directory entry granting authorization to
use the CMS Batch Facility. Consult the VM/SP Planning Guide and
Reference for the proper coding of the directory macro parameters.

USER CMSBATCH BATCH 1M 2M BG
ACCOUNT 13 SYSTEM
OPTION ACCT
IPL CMS
CONSOLE 009 3215
SPOOL DOC 2540 READER *
SPOOL ODD 2540 PUNCH A
SPOOL ODE 1403 A
LINK MAINT 190 190 RR
MDISK 195 3330 xxx 010 'paswrd' W 'rdpswd' 'wrtpswd' 'allpswd'

In the example above, CMSBATCH is the userid of the CMS Batch machine
and Band G are the privilege classes assigned to it. Privilege class B gives
the CMS Batch machine MSGNOH capability. MSGNOH (Message No
Header) strips the timestamp and userid from the messages you send. For
information on redefining privilege classes, see the VM/ SP CP for System
Programming.

Note: There is no 191 MDISK for the CMS batch machine.

To have the CMS batch machine automatically logged on, you should have
the following entry in the autolog virtual machine's (AUTOLOG1)
PROFILE EXEC:

AUTOLOG CMSBATCH BATCH CMSBATCH

Otherwise, the operator logs on to the CMS batch machine and enters
"CMSBATCH" followed by "DISCONNECT" (if the CMS batch machine is
to run in DISCONNECT status). Refer to the VM/ SP CP Command
Reference for more information on the A UTOLOG command.

334 VM/SP eMS for System Programming

Resetting the eMS Batch Facility System Limits

Each job running under the CMS Batch Facility is limited by default to the
maximum value of 32,767 seconds of virtual processor time, 32,767 punched
cards output, and 32,767 printed lines of output. You can reset these limits
by modifying the BATLIMIT MACRO file, which is found in the CMSLIB
macro library, and by reassembling DMSBTP.

Writing Routines To Handle Special Installation Input

The CMS Batch Facility can handle user-specified control language and
special installation batch facility /JOB control cards. These handling
mechanisms are built into the system in the form of user exits from batch.
You are responsible for generating two routines to make use of them.
These routines must be named BATEXIT1 and BATEXIT2, respectively, and
must have a filetype of TEXT and a filemode number of 2 if placed on the
system disk or an extension of the system disk. (See the VM/SP eMS
User's Guide for information on how to write and use CMS Batch Facility
control cards.) The routines you write are responsible for saving registers,
including general purpose register 12, which saves address ability for the
batch facility. These routines (if made available on the system disk) are
included with the CMS Batch Facility each time it is loaded.

BATEXIT1: Processing User-Specified Control Language

BATEXIT1 is an entry point provided so that users may write their own
routine to check non-CMS control statements. For example, a routine
could be written to scan for the OS job control language needed to compile,
link edit, and execute a FORTRAN job. BATEXIT1 receives control after
each read from the CMS Batch Facility virtual card reader is issued.
General purpose register 1 contains the address of the batch facility read
buffer, which contains the card image to be executed by the batch facility.
This enables BATEXIT1 to scan each card it receives as input for the type
of control information you specify.

If, after the card is processed by BATEXIT1, general purpose register 15
contains a nonzero return code, the eMS Batch Facility flushes the card
and reads the next card. If a zero is returned in general purpose register
15, the batch facility continues processing by passing the card to CMS for
execution.

BATEXIT2: Processing the Batch Facility IJOB Control Card

BATEXIT2 is an entry point provided so that users can code their own,
routine to use the /JOB card for additional information. BATEXIT2
receives control before the VM/SP routine used to process the batch facility
/JOB card begins its processing, and BATEXIT2 receives control after CMS
has scanned the /JOB card and built the parameter list. When BATEXIT2
is processing, general purpose register 1 points to the CMS parameter list

Chapter 12. Using the CMS Batch Facility 335

ClliJ8 [38~Q;~u ~@~D~n~v
r.::.-===-====--==--=--=-_

buffer. This buffer is a series of 8-byte entries, one for each item on the
IJOB card. If the return code found in general purpose register 15 resulting
from BATEXIT2 processing of this card is nonzero, an error message is
generated and the job is flushed. If general purpose register 15 contains a
zero, normal checking is done for a valid userid and the existence of an
account number. Finally, execution of this job begins.

EXEC Procedures for the Batch Facility Virtual Machine

You can control the CMS Batch Facility virtual machine using EXEC
procedures. For example, you can use an EXEC:

o To produce the proper sequence of CP/CMS commands for users who do
not know CMS commands and controls.

o To provide the sequence of commands needed to execute the most
common jobs (assemblies and compilations) in a particular installation.

For information on how to use the EXEC facility to control the batch
facility virtual machine, see the VM/SP eMS User's Guide.

Data Security under the Batch Facility

After each job, the CMS Batch Facility loads (via IPL) itself destroying all
nucleus data and work areas. All disks where links were established during
the previous job are detached.

At the beginning of each job, the batch facility work disk is accessed and
then immediately erased preventing the current user job from accessing
files that might remain from the previous job. Because of this, execution of
the PROFILE EXEC is disabled for the CMS Batch Facility machine. You
may, however, create an EXEC procedure called BATPROF EXEC and store
it on any system disk to be used instead of the ordinary PROFILE EXEC.
The batch facility then executes this EXEC at each job initialization time.

Improved IPL Performance Using a Saved System

Since the CMS batch processor goes through an IPL procedure after each
user job, an installation may experience a more efficient IPL procedure by
using a saved CMS system when processing batch jobs.

This can be accomplished by passing the name of the saved system to the
CMS Batch Facility via the optional "sysname" operand in the
CMSBATCH command iine.

The batch facility saves the name of the saved system until the end of the
first job. At this time it stores the name in the IPL command line both as

336 VM/SP eMS for System Programming

/

(~ r\ n ~ r:J '\ r. r~-:J .' a n a "
VUV~~ L08h~lJU ~::l8CU~uhJ

L ___ .. __ ._._._ .. _______ ... _. ____ ~.::.:::.~=__=.=.:..: . --.-----.-.. -.... -.---.- .. -.. -.---.. -... --.-----.. ----.------.---.--.------.-.. --------.----.---.-:.--.--.... -.-.----==. __ .. ::=J

the "device address" and as the PARM character string. The latter entry
informs the eMS initialization routine (DMSINS) that a saved system has
been loaded and that the name is to be saved for subsequent IPL
procedures.

Note: When using the eMS SET command, the BLIP operand is ignored
when issued from the eMS batch machine.

Chapter 12. Using the CMS Batch Facility 337

[::::-::=~~.::::_=:--===-::~=::::-==='::::=:-===.-_ .. __ . __ .. _____ ._._._ _ .. _._. ___ .. __ ._ _ ... _. __ ... ___ ~m •••••••• _ •••.•••.•••••• _ •.••• _ .• ' _ ••• _._ •• _. _____ •••• ____ • ___ ._. ____ •• __ -= ___ .1

338 VM/SP eMS for System Programming

r--·-·---··--------- -. - .-.-.. ---.---- -.. -.. -- .. ---- -.. --- .. -- ... --- .. -- ---.--------.--.-----.--------.---.--.------ .-----.---.-.------ .. -- -.. ---- -- .. -.-- .. -.-

I @ nr'i: I~f r~ r il'n rUt-{fri @I / ~~ u ~ :<Wl~ • rVi IDfj ,(:.(,1 (o.;no...:. L _______ _

When a disk is accessed, each module that fits the description specified on
the ACCESS command is included in the resident directory. An auxiliary
directory is an extension of the resident directory and contains the name
and location of certain CMS modules that are not included in the resident
directory. These modules, if added to the resident directory, would
significantly increase its size, thus increasing the search time and storage
requirements. An auxiliary directory can reference modules that reside on
the S-disk; or, if the proper linkage is provided, reference modules that
reside on any other read-only CMS disk. To take advantage of the saving
in search time and storage, modules that are referenced via an auxiliary
directory should never be in the resident directory. The disk where these
modules reside should be accessed in a way that excludes these modules.

Adding an Aa.utiliary Directory

To add an auxiliary directory to CMS, the system programmer must
generate the directory, initialize it, and establish the proper linkage. Only
when all three tasks are completed, can a module described in an auxiliary
directory be properly located.

Generating the AUldliary Directory

The DMSFST Macro

An auxiliary directory TEXT deck is generated by assembling a set of
DMSFST macros, one for each module name.

The format of the DMSFST macro is:

[label] DMSFST {(filename [filetype J)} ['aliasnameJ
,MODULE [,FORM=E]

where:

filename ,file type
is the name of the module whose file status table (FST) information is
to be copied.

Chapter 13. Using Auxiliary Directories 339

---- --------------------------------

aliasname
is another name for the module.

FORM=E
specifies that 64-byte FST entries are to be generated rather than
40-byte entries. Either length FST entry operates correctly on basic
CMS. However, the 40-byte form does not contain such information as
date/time after initialization by GENDIRT.

Initializing the Auxiliary Directory

The GENDIRT Command

After the auxiliary directory is generated via the DMSFST macro, it must
be initialized. The CMS GENDIRT command initializes the auxiliary
directory with the name and location of the modules to reside in an
auxiliary directory. By using the GENDIRT command, the file entries for a
given module are loaded only when the module is invoked.

Note: Do not load the modules into the transient area before issuing the
GENDIRT command.

The format of the GENDIRT command is:

GENDIRT directoryname [targetmode [sourc,emodeJ]

where:

. directoryname
is the entry point of the auxiliary directory.

targetmode
is the mode of the disk containing the modules referenced in the
auxiliary directory. The letter is the mode of the disk containing the
modules at execution time, not the mode of the disk at the
initialization of the directory. At directory creation, all modules
named in the directory being generated must be on either the A-disk
on a read-only extension or on the disk specified in the sourcemode
parameter. The default value for targetmode is S, the system disk. It
is your responsibility to determine the usefulness of this operand at·
your installation and to inform users of programs using auxiliary
directories of the proper method(s) of access.

sourcemode
is the mode of the disk containing the modules or files when the
GENDIRT command is issued. If not specified, 'A' is the default.

340 VM/SP eMS for System Programming

./

l\[!.~~ru ~ a~]u~Y' U;)U [j,(0C~(~)uk)CJ
~~~~=.~.:~~~=~~.==--::._.:.._~~~~_~.-::~~_..::~~-=-==~-~::-=~= .. ~~:::~= .. ~=~~=~==.~.::::.:=.:.::::.:.==~=:=.:..==.::.=:=_~::-~.::.::.-.:...:.:::....:-==~_=.=-==:.:..-.J 

Establishing the Proper Linkage 

The CMS module, DMSLAD, entry point DMSLADAD, must be called by a 
user program or interface to initialize the directory search order. The 
subroutine, DMSLADAD, must be called via an SVC 202 with register 1 
pointing to the appropriate PLIST. The disk containing the modules listed 
in the auxiliary directory must be accessed as the mode specified, or 
implied, by the GENDIRT command before the call is issued. If the 
GENDIRT command has not been used, the user receives the message: 
"File not found" or "Error reading file". 

The coding necessary for the call is: 

LA Rl,PLIST 
SVC 202 
DC AL4(error return) 

This call must be executed before the call to any module to be located via 
an auxiliary directory. 

The PLIST should be: 

PLIST DS 
DC 
DC 
DC 

OF 
CL8'DMSLADAD' 
V(directoryname) 
F'O' 

The auxiliary directory is copied into nucleus free storage. The active disk 
table (ADT) for the targetmode expressed or implied by the GENDIRT 
command is found and its file directory address chain (ADTFDA) is 
modified to include the nucleus copy of the auxiliary directory. A flag, 
ADTPSTM, in ADTFLG2 is set to indicate that the directory chain has 
been modified. 

The address of the nucleus copy of the auxiliary directory is saved in the 
third parameter of the input PLIST and the high-order byte of the third 
parameter is set to X'80' to indicate that the directory search chain was 
modified and that the next call to DMSLADAD is a clear request. 

To reset the directory search chain, a second call is made to DMSLADAD 
using the modified PLIST. DMSLADAD removes the nucleus copy of the 
auxiliary directory from the chain and frees it. This call to DMSLADAD 
removes all auxiliary blocks from the directory chain; there is no linkage to 
delete selective auxiliary directory blocks from the chain. DMSLADAD 
does not, however, restore the caller's PLIST to its initial state. 

Error Handling and Return Codes 

An error handling routine should be coded to handle nonzero return codes 
from DMSLADAD in register 15. The following errors (with condition code 
= 2) may occur on a call to DMSLADAD: 

Chapter 13. Using Auxiliary Directories 341 



_._.J 

Description DMSLADAD Return 
Request Type Code 

The auxiliary directory address is not initialize, 1 
specified in the PLIST. clear 

The targetmode specified at GENDIRT initialize 1 
time is not accessed. 

The targetmode specified at GENDIRT initialize 1 
time is used to access an OS or DOS disk. 

The address of the nucleus copy of the clear 2 
auxiliary directory is not specified in the 
third parameter of the PLIST. 

No auxiliary directory has been initialized clear 2 
on the given disk. 

The targetmode specified at GENDIRT initialize 3 
time is accessed in shared storage. 

Creaiing an AUltiliary Direc~ory 

In this example, consider an application called PAYROLL consisting of 
several modules. It is possible to put these modules in an auxiliary 
directory rather than in the resident directory. It is further possible to put 
the auxiliary directory on a disk other than the system disk. In this 
example, the auxiliary directory is placed on the Y-disk. 

First, generate the auxiliary directory TEXT deck for the payroll 
application using the DMSFST macro: 

PAYDIRT 

DIRTBEG 

DIRTEND 

START 
DC 
DC 
EQU 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DMSFST 
DC 
EQU 
END 

o 
F'40' LENGTH OF FST ENTRY! 
A(DIRTEND-DIRTBEG) SIZE OF DIRECTORY 
* 
PAYROLLI 
PAYROLL2 
PAYROLL3 
PAYFICA 
PAYFEDTX 
PAYSTATE 
PAYCITY 
PAYCREDU 
PAYOVERT 
PAYSICK 
PAYSHIFT 
2A(O) POINTER TO NEXT FST BLOCK 
* 

INote: F'64' should be used if FORM = E is specified on DMSFST macro. 

In this example, the payroll control program (PAYROLL), the payroll 
auxiliary directory (P A YDIRT), and all the payroll modules reside on the 
194 disk. 

342 VMjSP eMS for System Programming 



r\ .~. r,)" " II "llrl""U' 111;"ll''''l 'I' 'II·'·::.J''''''· )r':I(").C'" i-J.I.:.:.J.:,~ UC: u ~ ~_,:.JU l:"'!..;.l~~ U JG0 

In the payroll control module (PAYROLL), the subroutine DMSLADAD 
must be called to establish the linkage to the auxiliary directory. This call 
must be executed before any call is made to a payroll module that is in the 
PA YDIRT auxiliary directory. 

LA R1, PLIST 
SVC 202 
DC AL4(ERRTN) 

PLIST DS OF 
DC CL8'DMSLADAD' 
DC V(PAYDIRT) 
DC F'O' 

Next, all payroll modules must have their absolute core-image files 
generated and the payroll auxiliary directory must be initialized. In the 
example, the payroll control module (PAYROLL) is given a mode number of 
2 while the other payroll modules are given a mode number of 1. When the 
PAYROLL program is finally executed, only the files on the 194 disk with a 
mode number of 2 are accessed. This means only the PAYROLL control 
program (which includes the payroll auxiliary directory) will be referenced 
from the resident directory. All the other payroll modules, because they 
have mode numbers of 1, are referenced via the payroll auxiliary directory. 

The following sequence of commands create the absolute core-image files 
for the payroll modules and initialize the payroll auxiliary directory. 

ACCESS 194 A 
LOAD PAYROLL PAYDIRT 
GENMOD PAYROLL (now the auxiliary directory is included 

in the payroll control module, but it is 
not yet initialized.) 

LOADMOD PAYROLL 
INCLUDE PAYROLL 1 
GENMOD PAYROLL1 

LOADMOD PAYROLL 
INCLUDE PAYSHIFT 
GENMOD PAYSHIFT 

LOADMOD PAYROLL 
GENDIRT PAYDIRT Y 

(this sequence of three commands is 
repeated for each payroll module called 
by PAYROLL to establish the proper 
address where the module would be loaded.) 

GENMOD PAYROLL MODULE A2 

When it is time to execute the PAYROLL program, the 194 disk must be 
accessed as the Y-disk (the same mode letter as specified on the GENDIRT 
command). Also, the 194 disk is accessed in a way that includes the 
PAYROLL control program in the resident directory but not the other 
payroll modules. This is done by specifying a mode number of 2 on the 
ACCESS command. 

ACCESS 194 Y/S * * Y2 

Now, a request for a payroll module, such as PAYOVERT, can be 
successfully fulfilled. The auxiliary directory will be searched and 
PAYOVERT will be found on the Y-disk. 

Chapter 13. Using Auxiliary Directories 343 



L __ ,_" ____ ._. _____ .. _ .. ___ . __ ._ .... _. __________ .'' ___ . ___ . _______ ._. __ . ______ . __ ,_. ________ .. _ .... __________________ ... ___ .. , ..... ____ .... ____ .J 

Notes: 

1. A disk referred to by an auxiliary directory must be accessed as a 
read-only disk, and it cannot be accessed in shared storage. (For details 
on the ACCESS command, see the VM/SP CMS Command Reference. 
For details on the SA VEFD command, see "Sharing File Directory 
Information" on page 328.) 

2. You cannot issue the GENDIRT command against an auxiliary directory 
included in a transient module, since the GENDIRT command is also a 
transient module. In the example above, if you issue: 

ACCESS 194 A . 
LOAD PAYROLL PAYDIRT (ORIGIN TRANS 

LOADMOD PAYROLL 
GENDIRT PAYDIRT Y 

the GENDIRT module overlays the PAYROLL module in the transient 
area before initializing the PA YDIRT auxiliary directory, and hence, 
would fail. 

344 VM/SP eMS for System Programming 



r--- --'-- -- -" .. '-' --" -.-.-.--
I 
I 
I 

I Ie I ih::f?' (::f; j I ~ ! I U ~ n (Dr::-1 i'.:-I ~ 11'1 I;; Ifil n (~I f,·.\'':-:.:{~I n -n j cd ,:. i; \liCll; I Q "'., : II '.:; I iii.;:: ,~ I:' 
IL. ____________________________________ ~_ I·~i(,:.~~ ~ U,lf:1 ~(:.~ n'n_~,,'_~'~~(_:.:-_____ _ 

The minimum size virtual machine required by the assembler is 256K bytes. 
However, better performance is generally achieved if the assembler is run 
in 320K bytes of virtual storage. This size is recommended for medium and 
large assemblies. 

If more virtual storage is allocated to the assembler, the size of buffers and 
work space can be increased. The amount of storage allocated to buffers 
and work space determines assembler speed and capacity. Generally, as 
more storage is allocated to work space, larger and more complex macro 
definitions can be handled. 

You can control the buffer sizes for the assembler utility data sets 
(SYSUTl, SYSUT2, and SYSUT3), and the size of the work space used 
during macro processing, by specifying the BUFSIZE assembler option. Of 
the storage given, the assembler first allocates storage for the ASSEMBLE 
and CMSLIB buffers according to the specifications in the DD statements 
supplied by the FILEDEF for the data sets. Then the assembler allocates 
storage for the modules of the assembler. The remainder of the virtual 
machine is allocated to utility data set buffers and macro generation 
dictionaries according to the BUFSIZE option specified: 

BUFSIZE(STD): 
37 percent is allocated to buffers, and 63 percent to work space. This is 
the default if you do not specify any BUFSIZE option. 

BUFSIZE(MIN): 

O"erlay Structures 

Each utility data set is allocated a single 790-byte buffer. The remaining 
storage is allocated to work space. This allows relatively complex macro 
definitions to be processed in a given virtual machine size, but the speed 
of the assembly is substantially reduced. 

An overlay structure can be created in CMS in two different ways, although 
CMS has no overlay supervision. For descriptions of all the CMS 
commands mentioned, see the VMj SP CMS Command Reference. 

Chapter 14. Understanding Assembler Virtual Storage Requirements 345 



t~G~')euli~[JJUGC' VDG'2~Jcl~ S)'2(;~u'cJGjG 

[=:-~:~--=~=-~-=~-:'~-=~:=~=='=~--=--=:====~==:::=-.-::~~~~=-~===:::::'::=-~:===:::==-.:.=~==~=.::=:==-:::~:.-=-.===-:"-=~==-~=-==-:'==-===.=====:~~=~:] 

Prestructured Overlay 

A prestructured overlay program is created using the LOAD, INCLUDE, 
and GENMOD commands. Each overlay phase or segment is a 
nonrelocatable core-image module created by GENMOD. The phases may 
be brought into storage with the LOADMOD command. 

A (Root Phase) 

< Location xxxxxx 

C 

B < Location yyyyyy 

0 E 

Figure 39. An Overlay Structure 

The overlay structure shown in Figure 39 could be prestructured using the 
following sequence of commands (Programs A, B, C, D, and E are the names 
of TEXT files; the overlay phases will be named Root, Second, Third, etc.): 

LOAD A B 
GENMOD ROOT (FROM A TO B STR) 
GENMOD SECOND (FROM B) 
LOADMOD ROOT 
INCLUDE C D 
GENMOD THIRD (FROM C TO D) 
GENMOD FOURTH (FROM D) 
LOADMOD THIRD 
INCLUDE E 
GENMOD FIFTH (FROM E) 

The programmer need not know the storage address where each phase 
begins. A TEXT file can be made to load at the proper address by reloading 
earlier phases. In the foregoing example, the command sequences, 
"LOADMOD ROOT/INCLUDE C D" and "LOADMOD THIRD/INCLUDE 
E," cause TEXT files C, D, and E to load at the proper addresses. 

If the root phase contains address constants to the other phases, one copy 
of the root must be kept in storage while each of the other phases is 
brought in by the LOAD or INCLUDE commands without an intervening 
GENMOD. The root phase is then processed by GENMOD after all address 
constants have been satisfied. In this case, the programmer must know the 
address where non-root phases begin (in Figure 39 on page 346, locations 
xxxxxx and yyyyyy). The following sequence of commands could be used: 

346 VM/SP eMS for System Programming 



.:~~SGeuu·~[JU(::U~ ~JUL'~~Jcl~ S'l~Uu'E}UG 
L:'::'_··_-"::"'=-. __ ~::"~"::"':~_~.':'='''::'''':'':_·_''·''_·· ~: __ ~~~~ ___ ~~~~_-__ ::"::",,_ .. _.,,_-:_,,._. _"_~__ --__ ~~-':':"':'::.:J 

LOAD A B 
GENMOD SECOND (FROM B) 
INCLUDE C D (ORIGIN, xxxxxx) 
GENMOD THIRD (FROM C TO D) 
GENMOD FOURTH (FROM D) 
INCLUDE E (ORIGIN yyyyyy) 
GENMOD FIFTH (FROM E) 
LOAD A B 
INCLUDE C D (ORIGIN xxxxxx) 
INCLUDE E (ORIGIN yyyyyy) 
GENMOD ROOT (FROM A TO C STR) 

The ORIGIN option of the INCLUDE command is used to cause the 
included file to overlay a previously loaded file. The address at which a 
phase begins must be a doubleword boundary. For example, if the root 
phase were X'2BD' bytes long, starting at virtual storage location X'20000', 
then location xxxxxx would be the next doubleword boundary, or X'202CO'. 

The STR option, which is specified in the GENMOD of the root phase, 
specifies that whenever that module is brought into storage with the 
LOADMOD command, the Storage Initialization routine should be invoked. 
This routine initializes user free storage pointers. 

At execution time of the prestructured overlay program, each phase is 
brought into storage with the LOADMOD command. The phases can call 
LOADMOD. The OS macros LINK, LOAD, and XCTL normally invoke the 
INCLUDE command, which loads TEXT files. These macros will invoke 
LOADMOD if a switch, called COMPSWT, in the CMS nucleus constant 
area, NUCON, is turned on. 

With COMPSWT set, overlay phases that use LINK, LOAD, and XCTL 
must be pre structured MODULE files. 

Dynamic Load O"erlay 

The dynamic load method of using an overlay structure is to have all the 
phases in the form of relocatable object code in TEXT files or members of a 
TEXT library, filetype TXTLIB. The as macros, LINK, LOAD, and XCTL 
may then be used to pass control from one phase to another. The XCTL 
macro causes the calling program to be overlayed by the called program 
except when it is issued from the root phase. When issued from the root 
phase, CMS treats XCTL as it would a LINK macro, adding the new code at 
the end of the root phase. 

The COMPSWT flag in OSSFLAGS must be off when the dynamic load 
method is used. 

Chapter 14. Understanding Assembler Virtual Storage Requirements 347 



/ 

348 VM/SP eMS for System Programming 



• Appendix A: CMS Macro Library 

• Appendix B: Sample Terminal Session For as Programmers 

o Appendix C: Sample Terminal Session for DOS Programmers 

o Appendix D: Sample Terminal Session Using Access Method Services 

Appendixes 349 



350 VM/SP eMS for System Programming 



CMS Macro 

ABNEXIT 

ADD ENTRY 

APPLMSG 

BATLIMIT 

CMSDEV 

CMSIUCV 

CMSLEVEL 

COMPSWT 

CONSOLE 

CPRB 

CQYSECT 

CSMRETCD 

DELENTRY 

DISPW 

DMSABN 

DMSEXS 

DMSFREE 

DMSFRET 

DMSFST 

DMSKEY 

EPLIST 

The following is a list and brief description of the CMS macros supported 
for use by application programs. 

"Function 

Sets or clears abend exit routines. 

Tells the SRPI to notify a program when CMSSERV communications 
end. 

Accesses and displays messages from a message repository file. 

Table of CPU, punch, and printer limits for user jobs running under 
CMS batch. 

Obtains VM/SP device characteristic information and places it in a 
user-provided buffer. 

Initializes or terminates IUCV communications with another IUCV 
program or with CPo 

Defines the value of 'release number' of the feature or licensed program 
returned by QUERY CMSLEVEL. Refer to the CMSLEVEL macro for 
more information. 

Sets the compiler switch on or off. Refer to the VM/ SP eMS Macros 
and Functions Reference. 

Performs CMS fullscreen I/O services. 

Allocates CPRB storage or generates DSECT. 

Maps console path and/or device information to a user's buffer specified 
on the CONSOLE OPEN or QUERY function. 

IBM Personal Computer Enhanced Connectivity Facilities return code 
equates. 

Drops entry names previously placed on the list via ADDENTRY. 

Generates the calling sequence for the display terminal interface. Refer 
to "The DISPW Macro" on page 93. 

Abend the virtual machine. Refer to "Chapter 2. Processing Abends" on 
page 5. 

Execute an instruction without nucleus protection. Refer to "The 
DMSEXS Macro" on page 4l. 

Gets free storage. Refer to "The DMSFREE Macro" on page 27. 

Releases free storage. Refer to "The DMSFRET Macro" on page 33. 

Sets up a file status table for a given file. Refer to "The DMSFST 
Macro" on page 339. 

Sets nucleus protection on or off. Refer to "The DMSKEY Macro" on 
page 39. 

DSECT to map extended PLIST passed in register o. 

Appendix A. eMS Macro Library 351 



eMS Macro Function 

FSCB Sets up a file system control block. Refer to the VM/SP eMS Macros 
and Functions Reference. 

FSCBD DSECT that describes fields in CMS PLlST for related commands. 

FSCLOSE Closes a file. Refer to the VM/ SP eMS Macros and Functions 
Reference. 

FSERASE Erases a file. Refer to the VM/ SP eMS Macros and Functions 
Reference. 

FSOPEN Opens a file. Refer to the VM/ SP eMS Macros and Functions 
Reference. 

FSPOINT Executes the CMS POINT function. 

FSREAD Reads a record from a file. Refer to the VM/SP eMS Macros and 
Functions Reference. 

FSSTATE Checks for an existing file. Refer to the VM/SP eMS Macros and 
Functions Reference. 

FSWRlTE Writes a record into a disk file. Refer to the VM/SP eMS Macros and 
Functions Reference. 

HNDEXT Handles external and timer interrupts. Refer to the VM/ SP eMS 
Macros and Functions Reference. 

HNDINT Handles interrupt on devices. Refer to the VM/ SP eMS Macros and 
Functions Reference. 

HNDlUCV Initializes or terminates a virtual machine's lUCY communications. 

HNDSVC Handles SVCs. Refer to the VM/SP eMS Macros and Functions 
Reference. 

lMMBLOK Maps the immediate command name block. 

IMMCMD Declares, clears, and queries Immediate commands. 

LANGBLK Generates a language control block for an application. 

LINEDIT Types a line to the terminal. Refer to the VM/ SP eMS Macros and 
Functions Reference. 

LINERD Reads a line of input from the terminal. Refer to VM/ SP eMS Macros 
and Functions Reference. 

LINEWRT Reads a line of input from the terminal. Refer to VM/SP eMS Macros 
and Functions Reference. 

NUCON Generates a DSECT CMS nucleus constant area. 

PARSECMD Parses command arguments. Refer to the VM/ SP eMS Macros and 
Functions Reference. 

PARSERCB Generates a parser control block DSECT. Refer to the VM/SP eMS 
Macros and Functions Reference. 

PARSERUF Generates a mapping for the user token validation function parameter 
control block. Refer to the VM/SP eMS Macros and Functions 
Reference. 

PRlNTL Prints a line on the printer. Refer to the VM/ SP eMS Macros and 
Functions Reference. 

PUNCHC Punches a card. Refer to the VM/ SP eMS Macros and Functions 
Reference. 

,/ 

352 VM/SP eMS for System Programming 



eMS lVlacl'o FUllction 

PVCENTRY Generates a DSECT mapping for the parser validation code table. Refer 
to the VM/SP eMS Macros and Functions Reference. 

RDCARD Reads a card from the reader. Refer to the VM/SP eMS Macros and 
Functions Reference. 

RDTAPE Reads a record from tape. Refer to the VM/SP eMS Macros and 
Functions Reference. 

RDTERM Reads a record from the terminal. Refer to the VM/SP eMS Macros 
and Functions Reference. 

REGEQU Generates symbolic register equates. Refer to the VM/ SP eMS Macros 
and Functions Reference. 

SCBLOCK Maps the subcommand block. 

SENDREQ Sends service requests to servers. 

SHVBLOCK Maps the shared variable block. 

STRINIT Initializes storage. Refer to the VM/ SP eMS Macros and Functions 
Reference. 

TAPECTL Positions a tape. Refer to the VM/SP eMS Macros and Functions 
Reference. 

TAPESL Processes standard HDRl and EOFl tape labels. 

TEOVEXIT Sets up and clears a CMS tape end-of-volume exit. 

TRANTBL Generates a DSECT mapping of system translation tables. 

TVSPARMS Sets tape volume switching parameters for DMSTVS. Refer to "OS 
Tape Volume Switching" on page 204. 

USERSECT Maps the user work area. 

WAITD Waits until the next interrupt occurs for the specified device. Refer to 
the VM/ SP eMS Macros and Functions Reference. 

WAITECB Waits on an ECB or a list of ECBs. 

WAITT Waits until all pending I/O to the terminal has completed. Refer to the 
VM/ SP eMS Macros and Functions Reference. 

WRTAPE Writes a record to tape. Refer to the VM/SP eMS Macros and 
Functions Reference. 

WRTERM Writes a record to the terminal. Refer to the VM/SP eMS Macros and 
Functions Reference. 

Appendix A. eMS Macro Library 353 



354 VM/SP eMS for System Programming 



1 

The following terminal session shows how you might create an assembler 
language program in CMS, assemble it, correct assembler errors and 
execute it. All the lines in blue are lines that you should enter at the 
terminal. The other lines represent the system responses that you should 
receive when you enter the command. 

The input data lines in the example are aligned in the proper columns for 
the assembler; if you are using a typewriter terminal, you should set your 
terminal's tab stops at columns 10, 16, 31, 36, 41, and 46, and use the Tab 
key when you want to enter text in these columns. If you are using a 
display terminal, when you use a PF key defined as a tab or some input 
character, the line image is expanded as it is placed in the screen output 
area. 

There are some errors in the terminal session, so that you can see how to 
correct errors in CMS. 

xedit ostest assemble 
Creating new file: 
input 
Input mode: 
dataproc csect 

print nogen 
space 

rO equ a 
rl equ 1 
r2 equ 2 
rIO equ 10 
r12 equ 12 
r13 equ 13 
r14 equ 14 
r15 equ 15 

1 The XEDIT command is issued to create a file named OSTEST ASSEMBLE. Since the file does 
not exist, the editor indicates that it is a new file, and you can use the INPUT subcommand to 
enter input mode and begin entering the input lines. 

Appendix B. Sample Terminal Session for OS Programmers 355 



space 
stm 
balr 
using 
st 
la 
st 
lr 
space 

r14,r12,12(r13) 
r12,0 
*, r12 
r13,savearea+4 
r15,savearea 
r15,B(r13) 
r13,r15 

save caller's regs 
establish 
addressability 

store addr of caller's savearea 
get the address of my savearea 
store addr in caller's savearea 
save addr of my>savearea 

*open files and check that they opened okay 
space 
la 
open 
using 
la 
tm 
bnz 
la 
b 

checkout la 

process 

exit 

tm 
bnz 
la 
b 
space 
equ 
get 
lr 
put 
b 
space 
equ 
close 
1 
lr 
1 
1m 
br 
space 

savearea dc 
indata dcb 

r3,0 initially set return code 
(indata,outdata,(output)) open files 
ihadcb,rlO get dsect to check files 
rlO,indata prepare to check output file 
dcboflgs,x'lO' everything ok? 
checkout .. . continue 
r3,100 set return code 
exit ... exit 
rlO,outdata check output file 
dcboflgs,x'lO' is it okay? 
process 
r3,200 
exit 

* 
indata 
r2,rl 
outdata, (2) 
process 

* 

set return code 

read a record from input file 
save address of record 
move it to output 
continue until end-of-file 

(indata"outdata) close files 
r13,savearea+4 addr of caller's save area 
r15,r3 load return code 
r14,12(r13) get return address 
rO,r12,20(r13) restore regs 
r14 bye ... 

lBf'O' 
ddname=indd,macrf=gl,dsorg=ps,recfm=f,lrecl=BO, 

356 VM/SP eMS for System Programming 

* 



2 saveninput 

3 

Input mode: 
codad=c::i t 

outdata deb ddname=outdd,macrf=pm,dsorg=ps 
dcbd 

file 
Ready; 

space 
end 

4 global maclib osmacro 
Ready; 

S assemble ostest 
6 ASSEMBLER DONE 

OST00230 23 LA R3,0 INITIALLY SET RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
OST00240 24 OPEN (INDATA/OUTDATA/(~UTPUT)) OPEN FILES 
4000000 27+ 12,*** IHB002 INVALID OPTION OPERAND SPECIFIED-OUTDATA 
IF0197 *** MNOTE *** 
OST00290 32 LA R3,100 SET RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
OST00340 37 LA R3,200 SET RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
OST00460 63 LR RIS,R3 LOAD RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY S 
Ready(00012) i 

2 Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write what has 
already been written onto disk. The CP logical line end symbol (#) separates the SAVE and 
INPUT subcommands. 

3 A null line returns you to edit mode. You may wish, at this point, to proofread your input file 
before issuing the FILE subcommand to write the ASSEMBLE file onto disk. 

4 Since this assembler program uses OS macros, you must issue the GLOBAL command to identify 
the CMS niacro library, OSMACRO MACLIB, before you can invoke the assembler. 

5 The ASSEMBLE command invokes the VMjSP assembler to assemble the source file. 

6 The assembler displays errors encountered during assembly. Depending on how accurately you 
copied the program in this sample session, you mayor may not receive some of these messages; 
you may also have received additional messages. 

Appendix B. Sample Terminal Session for OS Programmers 357 



7 xedit ostest assemble 
locate Ir2 
R2 EQU 2 
i r3 equ 3 
lopen 
*OPEN FILES AND CHECK THAT THEY OPENED OKAY 
lopen 

OPEN (INDATA,OUTDATA,(OUTPOT)) 
c 1,1,,1 

OPEN (INDATA"OUTDATA,(OUTPUT)) 
8 file 

Ready; 
assemble ostcst 

9 ASSEMBLER DONE 
NO STATEMENTS FLAGGED IN THIS ASSEMBLY 
Ready; 

10 filedef indd disk test data a 
Ready; 

11 filedef outdd punch 
Ready; 

12 cp spool punch to * 
Ready; 

OPEN FILES 

OPEN FILES 

7 You must edit the file OSTEST ASSEMBLE and correct any errors in it. The errors placed in 
the example included a missing comma on the OPEN macro and the omission of an EQU 
statement for a general register. These changes are made as shown. The CMS Editor accepts a 
diagonal (/) as a LOCATE subcommand. 

S After all the changes have been made to the ASSEMBLE file, you can issue the FILE 
subcommand to replace the existing copy on disk and then reassemble it. 

9 This time the assembler completes without encountering any errors. If your ASSEMBLE file 
still has errors, you should use the editor to correct them. 

10 The FILEDEF command is used to define the input and output files used in this program. The 
ddnames INDD and OUTDD, defined in the DCBs in the program, must have a file definition in 
CMS. To execute this program, you should have a file on your A-disk named TEST DATA, 
which must have fixed-length, SO-character records. If you have no such file, you can make a 
copy of your ASSEMBLE file as follows: 

copyfile ostest assemble a test data a 

11 The output file is defined as a punch file so that it will be written to your virtual card punch. 

12 The CP SPOOL command is issued, using the CP function, to spool your virtual punch to your 
virtual card reader. 

358 VM/SP eMS for System Programming 

/ 



13 load ostest 
Ready; 
start 
DMSLI0740I Execution begins ... 

14 DMSSOP036E Open error code 04 on OUTDD. 
Ready(00200); 

15 filedef 
INDD DISK TEST DATA A1 
OUTDD PUNCH 
Ready; 

16 filedef outdd punch (lrecl 80 recfm f 
Ready; 

17 cp query reader all 
NO RDR FILES 
Ready; 

18 load ostest (start 
DMSLT0740I Execution begins ... 

19 PUN FILE 6198 TO BILBO COpy 01 NOHOLD 
Ready; 

13 The LOAD command loads the TEXT file produced by the assembly into virtual storage. The 
START command begins program execution. 

14 An open error is encountered during program execution. The CMS ready message indicates a 
return code of 200, which is the value placed in it by your program. 

15 The FILEDEF command, with no operands, results in a display of the current file definitions in 
effect. 

16 Error code 4 on an open request means that no RECFM or LRECL information is available. An 
examination of the program listing would reveal that the DeB for OUTDD does not contain any 
information about the file format; you must supply it on the FILEDEF command. Re-enter the 
FILEDEF command. 

17 You can use the CP QUERY command to determine whether there are any files in your card 
reader. It should be empty; if not, determine whether they might be files you need and, if so, 
read them into your virtual machine; otherwise, purge them. 

18 Use the LOAD command to execute the program again; this time, use the START option of the 
LOAD command to begin the program execution. 

19 The PUN FILE message indicates that a file has been transferred to your virtual card reader. 
The ready message indicates that your program executed successfully. 

Appendix B. Sample Terminal Session for as Programmers 359 



20 fi indd reader 
Ready; 
fi Qutdd disk new osfile a4 (recfm fb block 1600 lrecl 80 
Ready; 

21 listfile new osfile a4 (label 
DMSLST002E File not found. 
Ready(00028); 

22 run: ostest 
Execution begins ... 
Ready; 

23 listfile new osfile a4 (label 
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL 
NEW OSFILE A4 F 1600 5 10 9/30/75 8:26:14 PAT198 
Ready; 

20 For the next execution of this program, you are going to read the file back out of your card 
reader and create a new CMS disk file in OS simulated data set format. FI is an acceptable 
system truncation for the command named FILEDEF. 

21 The LISTFILE command is issued to check that the file NEW OSFILE does not exist. 

22 The RUN command (which is an EXEC procedure) is used instead of the LOAD and START 
commands to load and execute the program. The ready message indicates that the program 
completed execution. 

23 The LIST FILE command is issued again, and the file NEW OSFILE is listed. (If you issue 
another CP QUERY READER command, you will also see that the file is no longer in your card 
reader.) 

360 VM/SP eMS for System Programming 



The following terminal session shows how you might create an assembler 
language program in CMS, assemble it, correct assembler errors and 
execute it. All the lines in blue are lines that you should enter at the 
terminal. The other lines represent the system responses that you should 
receive when you enter the command. 

The input data lines in the example are aligned in the proper columns for 
the assembler; if you are using a typewriter terminal, you should set your 
terminal's tab stops at columns 10, 16, 31, 36, 41 and 46, and use the Tab key 
when you want to enter text in these columns. If you are using a display 
terminal, when you use a PF key or an input character defined as a tab, the 
line image is expanded as it is placed in the screen output area. 

Note: The assembler, in CMS, cannot read macros from VSE/AF libraries. 
This sample terminal session shows how to copy macros from VSE/ AF 
libraries and create CMS MACLIB files. Ordinarily, the macros you need 
should already be available in a system MACLIB file. You do not have to 
create a MACLIB each time you want to assemble a program. 

There are some errors in the terminal session so that you can see how to 
correct errors in CMS. 

1 cp link dosres 130 130 rr linkdos 
DASD 130 LINKED RIO 
Ready; 
access 130 z 
Z (130) RIO - DOS 
Ready; 

2 set dos on z 
Ready; 

1 Use the CP LINK command to link to the DOS system residence volume and the ACCESS 
command to access it. In this example, the system residence is at virtual address 130 and is 
accessed as the Z-disk. 

2 Enter the CMS/DOS environment specifying the mode letter at which the DOS/VS (VSE/AF) 
system residence is accessed. 

Appendix C. Sample Terminal Session for DOS Programmers 361 



3 

4 

xedit dostest assemble 
Creating new file: 
input 
Input mode: 
begpgm csect 

loop 

eodad 

balr 
using 
la 
open 
get 
put 
b 
equ 
close 
eoj 
eject 

buffer dc 
infile dtfdi 
save#input 
Input mode: 

12,0 
*,12 
13,savearea 
infile,outfile 
infile 
outfile 
loop 
* 
infile,outfile 

CL80' , 
modname=shrmod,ioarea1=buffer,devaddr=sysipt, 

eofaddr=eodad,recsize=80 

* 

outfile dtfdi modname=shrmod,ioareal=buffer,devaddr=syspch, * 
save#input 
Input mode: 

shrmod 
endpgm 

recsize=81 
dimod typefle=output 
equ 
end 

,'t 

3 Use the EDIT command to create a file named DOSTEST ASSEMBLE. Since the file does not 
exist, the editor indicates that it is a new file and you can use the INPUT subcommand to enter 
input mode and begin entering the input lines. 

4 Before continuing to enter input lines, the XEDIT subcommand SAVE is issued to write what 
has already been written onto disk. The logical line end symbol (#) separates the SAVE and 
INPUT subcommands. Another continuation character is needed. 

362 VM/SP eMS for System Programming 



5 
file 
Ready; 

6 xedit getrnacs eserv 
Creating new file: 
tabs 2 72 
input 
Input mode: 

7 punch open,close,get,put,dimod,dtfdi 

file 
Ready; 

8 assgn sysipt a 
Ready; 
eserv getrnacs 
Ready; 

9 listfile getmacs * 
GETMACS ESERV Al 
GETMACS MACRO Al 
GETMACS LISTING Al 
Ready; 

10 maclib gen dosmac getmacs 
Ready; 
erase getmacs * 
Ready; 

5 A null line returns you to edit mode. You may want, at this point, to proofread your input file 
before issuing the FILE subcommand to write the ASSEMBLE file on disk. 

6 To obtain the macros you need to assemble this file, use the editor to create an ESERV file. By 
setting the logical tabs at columns 2 and 72, you can protect yourself from entering data in 
column 1. 

7 PUNCH is an ESERV program control statement that copies and de-edits macros from source 
statement libraries; in this case, the system source statement library. The output is directed to 
the SYSPCH device, which the CMS/DOS ESERV EXEC assigns by default to your A-disk. 

8 You must assign the logical unit SYSIPT before you invoke the ESERV command. GETMACS is 
the filename of the ESERV file containing the ESERV control statements. 

9 After the ESERV EXEC completes execution, you have three files. You may want to examine 
the LISTING file to check the ESERV program listing. The MACRO file contains the punch 
(SYSPCH) output. 

10 The MACLIB command creates a macro library named DOSMAC MACLIB. Since the MACLIB 
command completed successfully, you can erase the files GETMACS ESERV, GETMACS 
LISTING and GETMACS MACRO; an asterisk in the filetype field of the ERASE command 
indicates that all files with the filename of GETMACS should be erased. 

Appendix C. Sample Terminal Session for DOS Programmers 363 



11 global mac lib dosmac 
Ready; 

12 assemble dostest 
13 ASSEMBLER DONE 

DOS00040 4 LA 13,SAVEAREA 
IF0188 SAVEAREA IS AN UNDEFINED SYMBOL 
DOSOOII0 35 EOJ 
IF0078 UNDEFINED OP CODE 
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY 2 
Ready(00008); 

14 xedit dotest assemble 
locate /buffer/ 
BUFFER DC CL80" 
input savearea ds 9d 
file 
Ready; 

15 xed it eoj eserv 
Creating new file: 
i punch eoj 
file . 
Ready; 

16 listio sysipt 
SYSIPT DISK A 

Ready; 
eserv eoj 
Ready; 

11 Before you can invoke the assembler, you have to identify the macro library that contains the 
macros; use the GLOBAL command specifying DOSlvIAC MACLIB. 

12 The ASSEMBLE command invokes the VM/SP assembler to assemble the source file. 

13 The assembler displays errors encountered during assembly. Depending on how accurately you 
copied the program in this sample session, you mayor may not receive some of these messages; 
you may also have received additional messages. 

14 To correct the first error, which was the omission of a DS statement for SA VEAREA, edit the 
file DOSTEST ASSEMBLE and insert the missing line. 

15 The second error indicates that the macro EOJ is not available since it was not copied from the 
source statement library. Create another ESERV file to punch this macro. 

16 Use the LISTIO command to check that SYSIPT is still assigned to your A-disk so that you do 
not have to issue the ASSGN command again. Then issue the ESERV command again, this time 
specifying the filename EOJ. 

364 VM/SP eMS for System Programming 



17 maclib add dosmac eoj 
Ready; 
maclib map dosmac (term 
MACRO INDEX SIZE 
OPEN 2 
CLOSE 46 
GET 90 
PUT 147 
DIMOD 241 
DTFDI 889 
EOJ 1174 
Ready; 

18 erase eoj ~I: 

Ready; 
assemble dostest 

19 ASSEMBLER DONE 

43 
43 
56 
93 

647 
284 

6 

NO STATEMENTS FLAGGED IN THIS ASSEMBLY 
Ready; 

20 listfile dostest * 
DOSTEST ASSEMBLE Al 
DOSTEST LISTING Al 
DOSTEST TEXT Al 
Ready; 
print dostest listing 
Ready; 

21 doslked dostest 
Ready; 

17 Use the ADD function of the MACLIB command to add the macro EOJ to DOSMAC MACLIB. 
Then issue the MACLIB command again using the MAP function and the TERM option to 
display a list of the macros in the library. 

18 Erase the EOJ files. You should always remember to erase files that you do not need any longer. 
Reassemble the program. 

19 This time the assembler completes without encountering any errors. If you ASSEMBLE file still 
has errors, you should use the editor to correct them. 

20 Use the LIST FILE command to check for DOSTEST files. The assembler created the files 
DOSTEST LISTING and DOSTEST TEXT. The TEXT file contains the object module. You can 
print the program listing if you want a printer copy. Then you may want to erase it. 

21 Use the DOSLKED command to link-edit the TEXT file into an executable phase and write it 
into a DOSLIB. Since this program has no external references, you do not need to add any 
linkage editor control statements. 

Appendix C. Sample Terminal Session for DOS Programmers 365 



22 listfile 
DOS TEST 
DOSTEST 
DOSTEST 
DOSTEST 
DOSTEST 
Ready; 

dostest * 
ASSEMBLE A1 
DOSLIB A1 
TEXT A1 
LISTING A1 
MAP A5 

23 cp spool punch to * 
Ready; 
punch test data a 
PUN FILE 0100 TO BILBO COPY 01 NOHOLD 
Ready; 
cp query reader all 
Ready; 
ORIGINID FILE CLASS RECDS CPY HOLD DATE TIME NAME 
PATTI 5840 A PUN 000097 01 NONE 09/29 15:00:39 TEST 

24 assgn sysipt reader 
Ready; 
assgn syspch a 
Ready; 

25 dlbl outfile a cms punch output (syspch 
Ready; 
state punch output a 
DMSSTT002E File not found. 
Ready(00028); 

TYPE 
DATA 

DIST 
BIN211 

22 Now you have a DOSTEST DOSLIB containing the link-edited phase and a MAP file containing 
the linkage editor map. You can display the linkage editor map with the TYPE command or use 
the PRINT command if you want a printer copy. 

23 To execute this program in CMS/DOS, punch a file that _has fixed- length, 80-character records 
into your virtual card punch. If you do not have any files that have fixed-length, 80-character 
records, you can create a file named TEST DATA with the CMS Editor or by copying your 
ASSEMBLE source file with the COPYFILE command as' follows: 

copyfile dostest assemble a test data a 

Use the CP SPOOL command to spool the punch to your own virtual machine, then use the 
PUNCH command to punch the file. The PUN FILE message indicates that the file is in your 
card reader. Use the CP QUERY command to check that it is the first or only file in your 
reader. 

24 Use the ASSGN command to assign SYSIPT to your card reader and SYSPCH to your A-disk. 

25 When you assign a logical unit to a disk mode, you must issue the DLBL command to identify 
the disk file to CMS. For this program execution, you are creating a CMS file named PUNCH 
OUTPUT. The STATE command ensures that the file does not already exist. If it does exist, 
rename it or else use another filename or filetype on the DLBL command. 

366 VM/SP eMS for System Programming 



26 global doslib dostast 
Ready; 
fetch dostest 
DMSFET710I Phase DOSTEST entry point at location 020000. 
Ready; 

27 start 
DMSLI0740I Execution begins ... 
Ready; 
listfile punch output a (label 
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS 
PUNCH OUTPUT Al F 80 97 10 
Ready; 
cp query reader all 
Ready; 
NO RDR FILES 

28 assgn sysipt a 
Ready; 
dlbl infile a cms punch output (sysipt 
Ready; 
assgn syspch punch 
Ready; 

DATE TIME LABEL 
9/29/79 14:50:55 BBB191 

26 Use the GLOBAL command to identify the DOSLIB, DOSTEST if you want to search for 
executable phases; then issue the FETCH command specifying the phase name. The FETCH 
command loads the executable phase into storage. When the FETCH command is executed 
without the START option, a message is displayed indicating the entry point location of the 
program loaded. 

27 The START command begins program execution. The CMS ready message indicates that your 
program completed successfully. You can check the input and output activity by using the 
LISTFILE command to list the file PUNCH OUTPUT. If you use the CP QUERY command, you 
can see that the file is no longer in your virtual card reader. 

28 If you want to execute this program again, you can assign SYSIPT and SYSPCH to different 
devices; in this example, the input disk file PUNCH OUTPUT is written to the virtual punch. 
You do not need to reissue the GLOBAL DOSLIB command; it remains in effect until you reissue 
it or IPL CMS again. 

Appendix C. Sample Terminal Session for DOS Programmers 367 



29 fetch dostest (start 
DMSLI0740I Execution begins ... 

30 PUN FILE 5829 TO BILBO COpy 01 NOHOLD 
Ready; 
reud punch2 output 
Ready; 
listfile punch2 output a (label 
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS 
PUNCH2 OUTPUT A1 F 80 97 10 
Ready; 

DATE TIME LABEL 
9/29/75 14:50:59 BBB191 

29 This time the program execution starts immediately because the START option is specified on 
the FETCH command. 

30 Again, the PUN FILE message indicates that a file has been received in your virtual card reader. 
You can use the CMS command READ CARD to read it onto disk and assign it a filename and 
filetype; in this example, PUNCH2 OUTPUT. 

368 VM/SP eMS for System Programming 

/ 



i\ r,-,r~\ lrr-J(]ii n [li"" C::',]rr--:lrl"":\n(-\ "U'~"(\r:--'7Infi'7l'Jn (~l\0("">"Uri\lrT':'l nJl~nfi'7l(i'~ /\(22"")'--', r\rJr",;;,~,(i'~"il 
;. ,lL/~'):"'~u ,I" U .. :,. "ja r.,)l.., UUU~)U .J-'U UUuUUUl.. U 0.:,) . .H);,.) ."I,.,;;uu ~ .....,Uuu,.J .. :l,_'~;J' .. I\" '- U'.I ,..,II,;,:.IU'-j .. 

~~)O U '\] ~ G_~~)C,) 

This sample terminal session shows you how to use access method services 
under eMS. You should have an understanding of VSAM and access 
method services before you use this terminal session. 

The terminal session uses a number of eMS files, which you may create 
during the course of the terminal session; or, you may prefer to create all of 
the files that you need beforehand. Within the sample terminal session, the 
file that you should create is displayed prior to the commands that use it. 

This terminal session is for both eMS as VSAM programmers and 
eMS/DOS VSAM programmers. All entries in blue are entries you (a eMS 
as VSAM programmer or a eMS/DOS VSAM programmer) should enter. 
The entries in blue and shaded are only for eMS/DOS programmers. 

Notes: 

1. This terminal session assumes that you have, to begin with, a read/write 
eMS A-disk. This is the only disk required. Additional disks used in 
this exercise are temporary disks, formatted with the Device Support 
Facility program. If you have OS or DOS disks available, you should use 
them, and remember to supply the proper volume and virtual device 
address information, where appropriate. The number of cylinders 
available to users for temporary disk space varies among installations; if 
you cannot acquire ample disk space, see your system support personnel 
for assistance. 

2. Output listings created by A MSER V take up disk space, so if your A-disk 
does not have a lot of space on it, you may want to erase the LISTING 
files created after each AMSERV step. 

3. If any of the A MSER V commands that you execute during this sample 
terminal session issue a nonzero return code,· for example: 

Ready(00012); 

You should edit the LISTING file to examine the access method services 
error messages. The publication VSE/ VSAM Messages and Codes 
contains the return codes and reason codes issued by access method 
services. You should determine the cause of the error, examine the DLBL 
commands and AMSER V files you used, correct any errors, and retry the 
command. 

Appendix D. Sample Terminal Session Using Access Method Services 369 



1 cp define t3330 200 10 
Ready; 
DASD 200 DEFINED 
cp query virtual 200 
Ready; 
DASD 200 3330 (TEMP) R/W 10 CYL 

cp define t3330 300 10 
Ready; 
DASD 300 DEFINED 
cp query virtual 300 
Ready; 
DASD 300 3330 (TEMP) R/W 10 CYL 

cp define t3330 400 10 
Ready; 
DASD 400 DEFINED 
cp query virtual 400 
Ready; 
DASD 400 3330 (TEMP) R/W 10 CYL 

2 File: PUNCH DSF 

INIT UNIT(200) DEVTYP(3330) NVFY VOLID(222222) 
MIMIC(MINI(10» 

INIT UNIT(300) DEVTYP(3330) NVFY VOLID(333333) 
MIMIC(MINI(10» 

INIT UNIT(400) DEVTYP(3330) NVFY VOLID(444444) 
MIMIC(MINI(10» 

3 File: DSF EXEC 

/* EXEC to Invoke Device Support Facility */ 
arg cntrl . 
address command 
'CP CLOSE READER' 
'CP PURGE READER CLASS I' 
'CP SPOOL PUNCH CONT TO * CLASS I' 
'PUNCH IPL DSF S ( NOH' 
'PUNCH' cntrl 'DSF ( NOH' 
'CP SPOOL PUNCH NOCONT CLOSE' 
'CP SPOOL READER CLASS I NOHOLD' 
'CP IPL OOC CLEAR ATTN' 

DVTOC(O,l,l) -
DVTOC(O,l,l) -
DVTOC(O,l,l) -

1 These commands define temporary 3330 mini disks at virtual addresses 200,300 and 400. 

2 This file contains control statements for the Device Support Facility program, which initializes 
disks for use by VSAM. These disks are labelled 222222, 333333 and 444444. 

3 This file contains the commands necessary to use the Device Support Facility program in a 
virtual machine. 

370 VM/SP eMS for System Programming 



4 exec dsf punch 

NO FILES PURGED 
PUN FILE nnnn TO CAMPBEL COpy 001 NOHOLD 

5 ICK005E DEFINE INPUT DEVICE, REPLY 'DDDD,CUU' or 'CONSOLE' 
ENTER INPUT/COMMAND: 

6 2540,OOc 

7 

2540,00C 
ICK006E DEFINE OUTPUT DEVICE, REPLY 'DDDD,CUU' or 'CONSOLE' 
ENTER INPUT/COMMAND: 

console 
CONSOLE 
ICKDSF - SA DEVICE SUPPORT FACILITIES 5.0 TIME20:26:00 03/09/82 

INIT UNIT(200) DEVTYP(3330) NVFY VOLID(222222) DVTOC(O,l,l) -
MIMIC(MINI(10» 

ICK00700I 200 BEING PROCESSED AS LOGICAL DEVICE = 3330 
PHYSICAL DEVICE = 3330-11 

ICK003D REPLY U TO ALTER VOLUME 200 CONTENTS, ELSE T 
ENTER INPUT/COMMAND: 

8 u 
U 
ICK01314I VTOC IS LOCATED AT CCHH=X'OOOO 0001' AND IS 1 TRACKS. 
ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0 

INIT UNIT(300) DEVTYP(3330) NVFY VOLID(333333) DVTOC(O,l,l) -
MIMIC(MINI(10» 

ICK00700I 300 BEING PROCESSED AS LOGICAL DEVICE = 3330 
PHYSICAL DEVICE = 3330-11 

ICK003D REPLY U TO ALTER VOLUME 300 CONTENTS, ELSE T 
ENTER INPUT/COMMAND: 
u 
U 
ICK01314I VTOC IS LOCATED AT CCHH=X'OOOO 0001' AND IS 1 TRACKS. 
ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0 

INIT UNIT(400) DEVTYP(3330) NVFY VOLID(444444) DVTOC(O,l,l) -
MIMIC(MINI(10» 

ICK00700I 400 BEING PROCESSED AS LOGICAL DEVICE = 3330 
PHYSICAL DEVICE = 3330-11 

PAGE 1 

4 Execute the DSF EXEC, specifying that the Device Support Facility control statements 
contained in the file 'PUNCH DSF' should be appended to the standalone Device Support 
Facility program. 

5 These messages are issued by the Device Support Facility standalone program. 

6 Since the Device Support Facility control statements reside in the virtual card reader, you must 
indicate to Device Support Facility the device type and the address of your virtual reader. 

7 This response tells Device Support Facility to output all run time information to your virtual 
machine console. 

8 This response gives Device Support Facility permission to proceed with the initialization of the 
disk. 

Appendix D. Sample Terminal Session Using Access Method Services 371 



ICK003D REPLY U TO ALTER VOLUME 400 CONTENTS, ELSE T 
ENTER INPUT/COMMAND: 
u 
U 
ICK01314I VTOC IS LOCATED AT CCHH=X'OOOO 0001' AND IS 1 TRACKS. 
ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0 

ICKDSF MAXIMUM STORAGE USED = 278968 BYTES (FIXED = 258120, 
DYNAMIC = 020848) 

ICK00002I ICKDSF PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0 
9 cp ipl cms parm autocr 

Ready; 
CMS VM/SP5.0 SL 000 
Ready; 

10 cp link vseaf 350 350 rr pass=read 
DASD 350 LINKED R/O; R/W BY GANDALF 
access 350 z 
DMSACC723I Z (350) R/O - DOS 
Ready; 

; set dos on z ( vsam 
, Ready; 

11 access 200 b 
DMSACC723I B (200) R/W - DOS 
Ready; 
access 300 c 
DMSACC723I C (300) R/W - DOS 
Ready; 
access 400 d 
DMSACC723I D (400) R/W - DOS 
Ready; 

------------

9 You must re-IPL CMS after all Device Support Facility processing has completed. 

10 If you are a CMS/DOS user, you must access the VSE/AF SYSRES disk and issue the 'SET DOS 
ON fIn (VSAM' command. If you have not previously linked to the VSE/AF SYSRES, you must 
use the CP LINK command before you issue the ACCESS command. Another method is to have 
the operator ATTACH the SYSRES disk to your virtual machine. Consult with your system 
programmer for the procedure to use at your installation. 

11 ACCESS the three newly formatted disks as your B-, C- and D-disks. 

372 VM/SP eMS for System Programming 

,/ 



12 query search 
PLC191 191 A R/W 
222222 200 B R/W - DOS 
333333 300 C R/W - DOS 
444444 400 D R/W - DOS 
MNT190 190 S R/O 
MNT191 190 Y/S R/O 
VSERES 350 Z R/O - DOS 
Ready; 

13 File: MASTCAT AMSERV 
DEFINE MASTERCATALOG -

( NAME (MASTCAT) 
VOLUME (222222) -
CYL (4) -
UPDATEPW (GAZELLE) -
FILE (IJSYSCT) ) DATA (CYL(l)) 

14 assgn syscat b 
Ready; 
dlbl ij sysct b dsn mastcat (syscat perm extent 
DMSDLB331R Enter extent specifications: 
19 171 

15 
Ready; 

16 amserv mastcat 
Ready; 

12 You can issue the QUERY SEARCH command to verify the status of all disks you currently 
have accessed. The 350 disk will be listed only if DOS is set on. 

13 The file MASTCAT AMSERV defines the VSAM master catalog that you are going to use and 
provides space for suballocated clusters. 

14 Identify the master catalog volume, and use the EXTENT option on the DLBL command so that 
you can enter the extents. For this extent, specify 171 tracks (9 cylinders) for the master 
catalog. Since 4 cylinders are specified in the AMSERV file, the remaining 5 cylinders will be 
used for suballocation by VSAM. 

15 You must enter a null line to indicate that you have finished entering extent information. 

16 Issue the AMSERV command specifying the MASTCAT file. The ready message indicates that 
the master catalog is created. 

Appendix D. Sample Terminal Session Using Access Method Services 373 



17 File: CLUSTER AMSERV 
DEFINE CLUSTER ( NAME (BOOK. LIST )

VOLUMES (222222) -
TRACKS (20) -
KEYS (14 r 0) -
RECORDSIZE (120,132) ) -
DATA (NAME (BOOK. LIST. DATA) ) -
INDEX (NAME (BOOK.LIST.INDEX ) ) A 

18 amserv cluster 
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV 
gazelle 
Ready; 

19 File: REPRO AMSERV 
REPRO INFILE (BFILE -

ENV ( RECORDFORMAT(F) -
BLOCKSIZE(120) -
PDEV (3330) ) ) -
OUTFILE (BOOK) 

20 assgn sysOOl a 
Ready; 
copyfile test data a (recfm f lrecl 120 
Ready; 
sort test data a book file a 
DMSSRT604R Enter sort fields: 
1 14 
Ready; 
dlbl bfile a cms book file (sysOOl 
Ready; 

21 assgn sys002 b 
Ready; 
dlbl book b dsn book. list (vsam sys002 
Ready; 
amserv repro 
Ready; 

FILE MASTCAT 

17 Define a suballocated cluster. This cluster is for a key-sequenced data set named BOOK.LIST. 

18 No DLBL command is necessary when you define a suballocated cluster. Not that since the 
password was not provided in the AMSERV file, access method services prompts you to enter the 
password of the catalog, which is defined as GAZELLE. 

19 Use the access method services REPRO command to copy a CMS data file into the cluster that 
you just defined. 

20 You must identify the ddnames for the input and output files for the REPRO function. BFILE is 
a eMS file, which must be a fixed-length, 120-character file, and it must be sorted alphameric ally 
in columns 1 through 14. The COPYFILE command can copy any existing file that you have to 
the proper record format; the SORT command sorts the records on the proper fields. 

21 The output file is the VSAM cluster, so you must use the VSAM option on this DLBL command. 

374 VM/SP eMS for System Programming 



22 File: SPACE AMSERV 
DEFINE SPACE -

( FILE (SPACE) -
TRACKS (57) -
VOLUME (333333) 

assgn sys003 c 
Ready; 

23 dlbl space c (extent sys003 
DMSDLB331R Enter extent specifications: 
19 57 

Ready; 
24 amserv space 

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV 
gazelle 
Ready; 

25 File: UNIQUE AMSERV 
DEFINE CLUSTER-

( NAME (UNIQUE.FILE) -
UNIQUE ) -

DATA 
( CYL (3) -

FILE (KDATA) -
RECORDSIZE (100 132) -
KEYS(12,0) -
VOLUMES (333333 ) ) -

INDEX -
(CYL (1)-

FILE (KINDEX) -
VOLUMES (333333) 

FILE MASTCAT 

22 Create an AMSERV file to define additional space for the master catalog on the volume labelled 
333333. 

23 Again, use the EXTENT option on the DLBL command so that you can enter extent information 
and a null line to indicate that you have finished entering extents. 

24 Issue the AMSERV command. Again, you are prompted to enter the password of the master 
catalog. 

25 This AMSERV file defines a unique cluster, with data and index components. 

Appendix D. Sample Terminal Session Using Ac·cess Method Services 375 



26 dlbl kdata c (extent sys003 
DMSDLB331R Enter extent specifications: 
76 57 

Ready; 
dlbl kindex c (extent sys003 
DMSDLB331R Enter extent specifications: 
76 76 

Ready; 
amserv unique 
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE MASTCAT 
gazelle 
Ready; 

27 File: USERCAT AMSERV 
DEFINE USERCATALOG -

( CYL (8) -
FILE (IJSYSUC) -
NAME (PRIVATE.CATALOG) -
VOLUME (444444) -
UPDATEPW (UNICORN) -
ATTEMPTS (2) ) -

DATA (CYL (3) )
INDEX ( CYL (1) ) -
CATALOG (MASTCAT/GAZELLE 

28 assgn sys006 d 
Ready; 
dlbl ij sysuc d dsn private. catalog (extent sys006 perm 
DMSDLB331R Enter extent specifications: 
19 152 

Ready; 
amserv usercat 
* 
Ready; 

26 You must enter DLBL command and extent information for both the data and index components 
of the unique cluster. 

27 Next, define a private (user) catalog for the volume 444444. This catalog is named 
PRIVATE.CATALOG and has a password of UNICORN. Again, as in step 13, space is made 
available for suballocation. 

28 When you define a user catalog that you are going to use as the job catalog for a terminal 
session, you should use the ddname IJSYSUC. 

376 VM/SP eMS for System Programming 

/' 



29 Tape 181 attached 

30 File: EXPORT AMSERV 
EXPORT BOOK. LIST 

INFILE (BOOK) -
OUTFILE (TEMP ENV (PDEV (2400) REWIND NOLABEL ) ) 

31 dlbl book b dsn book list (cat ij sysct sys002 
Ready; 

32 amserv export (tapout 181 
DMSAMS367R Enter tape output DDNAMEs: 
temp 
Ready; 

33 File: IMPORT AMSERV 

IMPORT 
CATALOG (PRIVATE.CATALOG/UNICORN) -
INFILE (TEMP ENV (PDEV (2400) REWIND NOLABEL» -
OBJECTS (BOOK.LIST VOL (444444» 

34 amserv import (tapin 181 
DMSAMS367R Enter tape input DDNAMEs: 
temp 
Ready; 

29 You may want to try an EXPORT !IMPORT function, if you can obtain a scratch tape from the 
operator. When the tape is attached to your virtual machine, you receive this message. 

30 The file that is being exported is the cluster BOOK.LIST created above. If you do not have 
access to a tape, you can export the file to you CMS A-disk. R~member to change the PDEV 
parameter to reflect the appropriate device type. 

31 You must reissue the DLBL for BOOK.LIST because there is a job catalog in effect, and the file 
is cataloged in the master catalog. Use the CAT option to override the job catalog. 

32 There is no default tape value when you are using tapes with the AMSERV command. You must 
specify the TAPIN or TAP OUT option and indicate the virtual address of the tape. You are 
prompted to enter the ddname, which for this file is TEMP. 

33 The last AMSERV file imports the cluster BOOK.LIST to the user catalog PRIVATE.CATALOG. 

34 Read the tape in as input. 

Appendix D. Sample Terminal Session Using Access Method Services 377 



/ 

378 VM/SP eMS for System Programming 



Structural Changes 

This book contains material formerly found in the VMjSP System 
Programmer's Guide, SCI9-6203. Figure 40 on page 380 shows the Release 
4 books now obsolete by this reorganization, the new system programming 
books, and the topics these new books contain. 

To obtain editions of the VMj SP System Programmer's Guide, you must 
order using the pseudo-number assigned to the respective edition. For: 

VMjSP Release 4, order STOO-1578 

VMjSP Release 3, order STOO-1352 

VMjSP Release 2, order SQ19-6203 

VMjSP Release 1, order STI9-6203. 

Summary of Changes 379 



Release 4 

System 
Programmer's 
Guide 

VM/SP, SC19-6203 
VM/SP HPO, SC19-6224 

VM/SP GCS I 
Guide • SC24-5249-1 

SC24-5260-0 

Release 5 

VM/SP CP For 
System 
Prograrrming 

VM/SP. SC24-5285 
VM/SP HPO, SC23-0341 

VM/SP CMS For 
System 
Prograrrming 

SC24-5286 

VM System 
Facilities 
For 
progra'i I 

SC24-5288 

VM Diagnosis 
Guide 

LY24-5241 

Introduction to CP 
Program States 
Processor Resources 
Storage Protection 
Virtual Storage Preservation 
'vN 110 Managemen t 
Spooling Functions 
CP Corrmands 
Interrupt Handling 
Accounting Records 
Saved System. DCSSs. Shared Segs 
CP Conventions 
Journa ling 
Suppressing Passwords 
Performance 
3850 MSS 
Timers 
CP in AP/MP Mode 
Print Buffers and Forms Control 
3800 Printing Subsystem 

I ntroduct i on to CMS 
Abend Processing 
Interrupt Handling in CMS 
Functional Information 
OS Macro Simulation 
VSE Support 
CMS'Support for OS and VSE/VSAM 
Saving CMS 
CMS Batch Fac i,1 i ty 
Auxi liary Directories 
Assembler Virt Stor Requirements 
CMS Macro Library 

VMCF 
lUCY 
SNA CCS 
*MSG 
*BLOCKIO 
*SIGNAL 
Special Message Faci lity 
Single Console Image Faci lity 
Logical Device Support Faci lity 
DIAGNOSE Instruction and Codes 
Using *BLOCKIO from OMS 
CMS lUCY 
Prograrrmable Operator Faci lity 

{

Introduction to Debugging 
Debugging the Virtual Machine 
Debugging CP 
Debugging CMS 
Debugging GCS 
Debugging Using IPCS 
Using DUMPSCAN Subcommands 

Figure 40. New VM/SP System Programming Manuals for VM/SP Release 
5 

380 VM/SP eMS for System Programming 

/ 



Technical Changes for VM System Facilitieo for Programming 

Summary of Changes 
for SC24-5286-0 
for VM/SP Release 5 

VM/SP Enhanced Usability 

VM/SP now has the following usability enhancements: 

o window functions 
o full-screen environment for CMS 
o a CONSOLE macro. 

When CMS is in full-screen mode, the user can enter commands from 
anywhere on the physical screen, scroll through data, and log data into 
files. The CONSOLE macro performs 3270 I/O operations. 

New CMS Commands 

SET TRANSLATE Command 
The SET TRANSLATE command specifies whether to use the User 
National Language Translation Tables and/or the System National 
Language Translation Tables. This command also suppresses 
translations and translation synonyms of command names for a 
language. 

SET LANGUAGE Command 
The SET LANGUAGE command changes the current language of your 
CMS session and any application running on CMS that uses national 
language support. 

P ARSECMD Command 
The P ARSECMD command invokes the parsing facility from an 
EXEC. 

New CMS Macros 

All new CMS macros are listed in Appendix A, "CMS Macro Library" on 
page 351. 

Modified CMS Commands 

GLOBAL Command 
The enhanced GLOBAL command· allows you to list up to 63 (formerly 
8) libraries from one of the supported library types (MACLIB, TXTLIB, 
DOSLIB, or LOADLIB) to be searched for macros, copy files, 
subroutines,' VSE executable phrases, or OS load modules when 
processing subsequent CMS commands. 

TXTLIB Command 
The FILENAME option of the TXTLIB command creates a directory 
entry in the TXTLIB for each filename of the TEXT files specified. 

Summary of Changes 381 



LOAD Command 
The HIST option of the LOAD command lets you add comments from 
TEXT files into MODULE files. 

INCLUDE Command 
The HIST option of the LOAD command lets you add comments from 
TEXT files into MODULE files. 

Enhancements for EXECs in Storage 

VM/SP now has an optional Installation Discontiguous Shared Segement 
(DCSS) to contain frequently used EXECs and Editor Macros that your 
installation provides. All users can access the DCSS and share the same 
executing copy of the EXECs. 

Enhanced Interactive Facility/System Profile 

The system profile is an EXEC that performs some CMS initialization 
function previously done in a module. By modifying this EXEC, the system 
programmer will be able to tailor the CMS environment to suit the 
installation's needs. 

Parsing Facility 

The CMS parsing facility parses and translat,es command name arguments. 
This lets users enter commands in national languages supported by VM/SP. 
These languages are: American English, KANJI, Uppercase English, 
French, German. 

To use the parsing facility, you must define command syntax in a special 
language, the Definition Language for Command Syntax (DLCS). The 
parsing facility parses a specified command by checking whether command 
arguments are specified according to the DLCS definition for that 
command. 

Defining command syntax in a DLCS file and using the parsing facility has 
the following advantages: 

1. Syntax checking is unnecessary in programs. 

2. Users can invoke programs in their own national language by 
modifying the DLCS file. 

Creating Message Files 

VM/SP now lets you store any message text in one central file. This file is 
called' a respository file. Some advantages of having a repository file are: 

• message text will not clutter your program 

• message text can be translated to another language easily 

382 VM/SP eMS for System Programming 



Enhanced Connectivity Facilities on VM/SP 

This part of CMS supports IBM Systemj370 to IBM Personal Computer 
Enhanced Connectivity Facilities on a VMjSP system. For detailed 
information about Enhanced Connectivity Facilities on VMjSP, refer to the 
IBM VMjSP Programmer's Guide to the Server-Requester Programming 
Interface for VMj SP, SC24-5291. 

Miscellaneous 

Most CMS messages and responses are now in mixed case. 

Minor technical and editorial changes have been made throughout this 
publication. 

Summary of Changes for the VM/SP System Programmer's Guide 

The following "Summary of Changes" reflect the changes made to the 
VMj SP System Programmer's Guide, Release 4 and Release 3. 

Summary of Changes 
for SC19-6203-3 
for VM/SP Release 4 

Group Control System (VM/SP GCS) 

This new component of VMjSP is a virtual machine supervisor that 
provides simulated MVS services and supports a multitasking 
environment. For more information on the Group Control System 
(GCS), refer to the VMj SP Group Control System Guide - (Discontinued), 
SC24-5249. 

Signal System Service 

This new CP system service allows virtual machines in a Virtual 
Machine Group to signal each other. The Signal System Service can 
only be used by virtual machines in a Virtual Machine Group. 

Saved System 8M Byte Limit Removal 

With the addition of this support, the SA VESYS, VMSA VE, and IPL 
functions have been enhanced to allow a page image copy of up to a 
16M byte virtual machine to be saved and restored. 

CPFRETTrap 

The CP FRET Trap can be used as an aid in solving problems caused by 
improper use of CP storage and to solve many storage overlay problems. 

Summary of Changes 383 



VMDUMP Enhancements 

DIAGNOSE code X'94' is available to allow a virtual machine to request 
dumping of its virtual storage. Also, the three address range restriction 
has been removed from the VMDUMP command. 

DIAGNOSE code X'98' 

Using DIAGNOSE code X'98' a virtual machine can lock and unlock 
virtual pages, and execute its own real channel programs. 

The Programmable Operator Facility 

The Programmable Operator Facility has been enhanced to support 
distributed operations in an SNA network through an interface, the 
Programmable Operator/NCCF Message Exchange (PMX), with the 
Network Communications Control Facility (N'CCF). The VM/SP 
Release 4 programmable operator: 

o Allows an NCCF operator to be identified to the programmable 
operator so that any messages intended for the logical operator may 
be routed to that NCCF operator. 

o Allows an NCCF operator to issue programmable operator 
commands and re,ceive responses. 

o Provides the LGLOPR command for assigning, releasing and 
replacing the logical operator during operation. 

CPTRAP Enhancements 

CPTRAP is a major service aid used in problem determination. 
Enhancements to the CPTRAP command provide two additional 
functions, GROUPID and WRAP, and one additional entry type, X'3D'. 

Enhancements to TRAPRED makes reviewing the trap data easier by 
providing more selectivity for X'3D', X'3E', and X'3F' entries and by 
providing a way to display formatted output of the trapped data. 

Information on CPTRAP has been rewritten and reorganized for 
ease-of-use. It has also been moved to the Part 3, the debugging section, 
since it is a debugging tool. 

Interactive Problem Control System (VM/SP IPCS) 

VlVl/SP Release 4 has been enhanced to include IPCS as a component of 
VM/SP. VM/SP IPCS is equivalent to the VM/lnteractive Problem 
Control System Extension (VM/IPCS/E) Program Product (5748-SAl). 

Inter-User Communications Vehicle (IUCV) Enhancements 

IUCV now supports the movement of data on the SEND, RECEIVE, and 
REPLY functions from discontiguous buffers. The modified IUCV 
macro handles the new BUFLIST = parameter on SEND and RECEIVE 

384 VM/SP eMS for System Programming 



functions and the new ANSLIST = parameter on the SEND and REPLY 
functions. 

Expansion of User Classes 

The DIRECT command has been enhanced and the OVERRIDE 
command has been added to provide the user with more than the seven 
IBM defined user classes. You can now choose from 32 user classes, A -
Z, and 1 - 6. 

Remote Spooling Communications Subsystem Networking Version 2 

With the release of the Remote Spooling Communications Subsystem 
Networking Version 2 Program Product (5664-188), any reference to 
RSCS in this manual applies to RSCS Version 2. Information 
pertaining to RSCS can be found in the VM/ SP Remote Spooling 
Communications Subsystem Version 2 General Information, GH24-5055. 

Miscellaneous 

IOCP Support Enhancements 

This support adds new MSSF command words to DIAGNOSE code X'80'. 

Integration of Functional Enhancements to VM/SP Release 3 

Information has been added to support: 

o The 3290 Information Panel 

o The 3370 Direct Access Storage Model 

o The 4248 Printer 

o The 4361 Model Groups 3, 4, and 5 Processor 

o The 4381 Model Groups 1 and 2 Processor 

o VM/SP 3800 Model 3 Compatibility Support 

Compatibility support allows VM/SP users to access the 3800 Model 
3 Printing Subsystem. Existing programs designed to produce 3800 
Model 1 printer output may produce output for the 3800 Model 3 
printer with little or no program change. Use of this support 
provides improved print quality (240 x 240 pel resolution) and the 
addition of a 10 lines-per-inch (LPI) vertical space option. 

DIAGNOSE code X'8C' 

DIAGNOSE code X'8C' has been enhanced to allow a user to access all 
of the data returned by CP's WRITE STRUCTURED FIELD QUERY. 

Summary of Changes 385 



DMKFRE/DMKFRT Split 

The module DMKFRE has been split into two modules, DMKFRE and 
DMKFRT. DMKFRE handles all requests for free storage as well as 
calls to DMKFRET to rel~ase free storage. DMKFRT handles all 
requests to return free storage thqt cannot be handled by the 
microcoded CP assist FRET function. 

Minor technical and editorial changes have been made throughout this 
publication. 

Summary of Changes 
for SC19-6203-2 
for VM/SP Release 3 

Programmable Operator Facility 

Several enhancements to the programmable operator facility added are: 

• Message routing with nicknames 

• Remote node availability 

e Enhanced text comparison 

• EXEC action routines 

• LOG recording and error handling 

PER 

Problem determination capability is greatly extended and enhanced by 
the new CP command, PER. 

DASD Block I/O System Service 

The DASD Block I/O System Service allows a virtual machine fast, 
device-independent asynchronous access to fixed size blocks on CMS 
formatted virtual DASD I/O devices. 

lUCY 

Inter-User Communication Vehicle (IUCV) extensions provide: 

• SEND and REPLY extensions 

• An extended mask capability for control interrupts 

• An expanded trace capability to record all IUCV operations 

• A macro option to initialize the parameter list 

• Support for the DASD block I/O system service. 

386 VM/SP eMS for System Programming 

/ 



The IBM 3088 Multisystem COInmunications Unit 

The IBM 3088 Multisystem Communications Unit interconnects 
multiple systems using block multiplexer channels. The 3088 uses an 
unshared subchannel for each unique address and is fully compatible 
with existing channel-to-channel adapter protocol. 

CMS IUCV Support 

Support for IUCV communication has been introduced into CMS. This 
support allows multiple programs within a virtual machine to use IUCV 
functions. Included is the ability to initialize a CMS machine for lUCY 
communication and to invoke IUCV functions via new CMS macros. 
These macros also allow the user to specify path-specific exits for IUCV 
external interrupts. 

CMS Abend Exits 

A general CMS abnormal exit capability is provided so that user 
programs may specify the address of a routine to get control before 
CMS abend recovery begins. An exit is established and cleared through 
a new CMS macro. 

Enhanced Immediate Command Support 

The immediate command capability of CMS is extended by allowing 
users to define their own immediate commands. 

Enhanced VSAM Support 

CMS supports VSE/VSAM Release 3 which includes significant 
enhancements designed to improve catalog reliability and integrity 
while providing additional serviceability and usability. VSE/VSAM 
Release 2 is not supported. 

Miscellaneous 

Changes to the DIAGNOSE code X'OO' interface provide the time zone 
differential from Greenwich Mean Time. 

DIAGNOSE code X'8C' allows a virtual machine to access device 
dependent information without having to issue a WRITE STRUCTURE 
FIELD QUERY REPLY. 

CMSSEG has been eliminated and the code was merged into the CMS 
l':luc1eus. 

The Remote Spooling Communications Subsystem (RSCS) section of this 
manual has been removed as it pertained to RSCS as a component of 
VM/370. Now, any reference to RSCS in this 'manual applies to the 
RSCS Networking Programming Product, and information can be found 
in the VM/ SP Remote Spooling Communications Subsystem Networking 
Program ReferelPce and Operations Manual, SH24-5005. 

Summary of Changes 387 



A newly added appendix lists and describes the eMS macros applicable 
to VM/SP. 

Minor technical and editorial changes have been made throughout this 
publication. 

388 VM/SP eMS for System Programming 



Abbreviations 

Some of the following terms and abbreviations are 
used throughout this publication for convenience: 

Unless otherwise noted, 

VM/SP refers to the VM/SP program package when 
y~¥ use it in conjunction with VM/370 
Release 6. 

CP refers to the VM/370 Control Program 
component enhanced by the functions 
included in the VM/SP package. 

CMS refers to the VM/370 Conversational Monitor 
System component enhanced by the functions 
included in the VM/SP package. 

GCS refers to the Group Control System 
component of VM/SP. See the Group Control 
System Command and Macro Reference, 
SC24-5250, for details of GCS. 

IPCS refers to the VM/370 Interactive Problem 
Control System component enhanced by the 
functions included in the VM/SP package. 

The IPCS component of VM/SP replaces the 
unmodified VM/370 interactive problem 
control system. Details describing this 
component are found in the VM Diagnosis 
Guide, LY24-5241. 

RSCS unless otherwise noted, refers to the RSCS 
Networking Version 2 Program Product 
(5664-188). 

When you install and use VM/SP in 
conjunction with the VM/370 Release 6 
System Control Program (SCP), it becomes a 
functional operating system that provides 
extended features to the Control Program 
(CP) and Conversational Monitor System 
(CMS) components of VM/370 Release 6. 
VM/SP adds no additional functions to the 
Remote Spooling Communications Subsystem 
(RSCS) component of VM/370. However, you 

can appreciably expand the capabilities of 
this component in a VM/SP system by 
installing RSCS Networking Version 2 
(5664-188). 

VSE refers to the combination of the DOS/VSE 
system control program and the 
VSE/Advanced Functions Program Product. 
"DOS", in certain cases, is still used as a 
generic term. For example, disk packs 
initialized for use with VSE or any 
predecessor DOS or DOS/V~E system may be 
referred to as DOS disks. 

CMS/DOS refers to the DOS-like simulation 
environment provided under the eMS 
component of the VM/SP. 

EXEC refers to EXECs using the System Product 
Interpreter (REXX), EXEC 2, or CMS EXEC 
languages. 

System/370 applies to the 4300 and 303X series of 
processors. 

The following terms in this publication refer to the 
indicated support devices: 

3066 refers to the IBM 3066 System Console. 

3088 refers to the IBM 3088 Multisystem 
Communications Unit (MCU) Models 1 and 
2. 

3262 refers to the IBM 3262 Printer, Models 1, 5, 
and 11. 3262 Models 3 and 13 are supported 
remotely as 3287 printers. 

3270 refers to a series of display devices, namely, 
the IBM 3275, 3276 (referred to as a 
Controller Display Station), 3277, 3278, and 
3279 Display Stations, and the 3290 
Information Panel. A specific device type is 
used only when a distinction is required 
between device types. 

Information about display terminal use also 
applies to the IBM 3138, 3148, and 3158 
Display Consoles when used in display mode, 
unless otherwise noted. 

Glossary of Terms and Abbreviations 389 



3285 or 3286 printer references also pertain to the 3480 refers to the IBM 3480 Magnetic Tape 
IBM 3287, 3288, and 3289 printers, unless Subsystem. 
otherwise noted. 

3430 refers to the IBM 3430 Magnetic Tape 
3330 refers to the IBM 3330 Disk Storage, Models Subsystem. 

1,2, or 11; the IBM 3333 Disk Storage and 
Control, Models 1 or 11; and the 3350 Direct 3800 refers to the IBM 3800 Printing Subsystems, 
Access Storage operating in 3330 Models 1, 3, and 8. A specific device type is 
compatibility mode. used only when a distinction is required 

between device types. References to the 3800 
3340 refers to the IBM 3340 Direct Access Storage Model 3 apply to both Models 3 and 8 unless 

Facility and the 3344 Direct Access Storage. otherwise explicitly stated. The IBM 3800 
Model 8 is available only in selected world 

3350 refers to the IBM 3350 Direct Access Storage trade countries. 
Device when used in native mode. 

4245 refers to the IBM 4245 Line Printer. 
3370 refers to the IBM 3370 Direct Access Storage 

Model. 4248 refers to the IBM 4248 Printer. 

3375 refers to the IBM 3375 Direct Access Device. 4250 refers to the IBM 4250 Printer. 

3380 refers to the IBM 3380 Direct Access 4361 refers to the IBM 4361 Model Groups 3, 4, 
Storage. The Speed Matching Buffer Feature and 5 Processor. 
(No. 6550) for the 3380 supports the use of 
extended count-key-data channel programs. 4381 refers to the IBM 4381 Model Groups 1 and 2 

Processor. 
3422 refers to IBM 3422 Magnetic Tape 

Subsystem. 

390 VM/SP eMS for System Programming 



Glossary 

This glossary defines new terms and all-capital 
abbreviations related to the VM/SP. This glossary 
is especially oriented for readers of the VM/ SP 
eMS for System Programming. Therefore, some 
terms already defined in the VM/SP Library Guide, 
Glossary, and Master Index, SC19-6207, do not 
appear here or may be defined slightly differently. 
Another glossary you may refer to is the IBM 
Vocabulary for Data Processing, 
Telecommunications, and Office Systems. 

auxiliary storage. Data storage other than main 
storage; in VM/SP, auxiliary storage is usually a 
direct access device. 

CAW. channel address word 

CCW. channel command word 

channel address word (CAW). An area in storage 
that specifies the location in main storage at which 
a channel program begins. 

channel command word (CCW). A double word at 
the location in main storage specified by the 
channel address word. One or more CCW s make up 
the channel program that directs data channel 
operations. 

channel status word (CSW). An area in storage 
that proyides information about the termination of 
input/output operations. 

Channel-to-Channel Adapter. A hardware device 
that can be used to connect two channels on the 
same computing system or on different systems. 

CKD. Count-Key-Data 

concurrently. Concerning a mode of operation 
that includes the performance of two or more 
operations within a given interval of time. 

CMS system disk. The virtual disk (S-disk) that 
contains the CMS nucleus and the disk-resident 

CMS commands. The CMS system disk can have 
extensions, usually the Y -disk. 

Count-Key-Data. Those DASD devices whose 
architecture defines variable size records consisting 
of count, key, and data fields. 

CSW. channel status word 

DAT. dynamic address translation. 

DCSS. discontiguous shared segments. 

deadline priority. An algorithm for determining 
when a virtual machine receives the next time slice. 

directory. For VM/SP, a CP disk file that defines 
each virtual machine's normal configuration: the 
userid, password, normal and maximum allowable 
virtual storage, CP command privilege class or 
classes allowed, dispatching priority, logical editing 
symbols to be used, account number, and CP options 
desired. 

discontiguous shared segments (DCSS). 
Synonymous with discontiguous segment. 

discontiguous segment. A 64K segment of 
storage that was previously loaded and saved and 
assigned a unique name. The segment(s) can be 
shared among virtual machines if the segment(s) 
contain reentrant code. 

DP A. dynamic paging area 

dynamic address translation. In System/370 
virtual storage systems, the change of a virtual 
address to a real storage address during execution 
of an instruction. 

dynamic paging area (DPA). An area of real 
storage that CP uses for virtual machine pages and 
pageable CP modules. 

FBA. Fixed-block architecture. 

file status table (FST). A table that describes the 
attributes of a file on a CMS disk, including 
filename, filetype, filemode, date last written, and 
other status information. 

Glossary of Terms and Abbreviations 391 



Fixed-Block Architecture (FBA). Those DASD 
devices whose architecture uses fixed blocks or 
records of 512 bytes. 

FST. file status table 

GCS. Group Control System facility 

Group Control System. An operating 
envi'ronment that provides a problem state OS 
subtasking environment with common storage 
access for members of a virtual machine group. 

guest virtual machine. A virtual machine in 
which an operating system is running. 

in-queue virtual machines. A virtual machine on 
the run list waiting to be dispatched. A virtual 
machine is added to the run list if its projected 
working set size is less than or equal to the number 
of real page frames available for allocation in the 
dynamic paging area. An in-queue virtual machine 
may be, but is not necessarily, runnable. 

interactive. (1) An application in which each user 
entry calls forth a response from a system or 
program. (2) The classification given to a virtual 
machine depending on this virtual machine's 
processing characteristics. When a virtual machine 
uses less than its allocated time slice because of 
terminal I/O, the virtual machine is classified as 
being interactive. See also non-interactive. 

Interactive Problem Control System (IPCS or 
VM/SP IPCS). A component of VM/SP that 
permits on-line problem management, interactive 
problem diagnosis, on-line debugging for 
disk-related CP or virtual machine abend dumps, 
problem tracking, and problem reporting. 

logon. The procedure by which a user begins a 
terminal session. 

logoff. The procedure by which a user ends a 
terminal session. 

392 VM/SP CMS for System Programming 

minidisk. Synonym for virtual disk. 

missing interrupt handler (MIH). A facility of 
VM/SP that detects incomplete I/O conditions by 
monitoring I/O activity. It also tries to correct 
incomplete I/O conditions without operator 
intervention. 

named system. A collection of saved pages a user 
can IPL or load by name. 

native mode. A mode in which an operating 
system is run stand-alone on the real machine 
instead of under VM/SP. 

noninteractive. The classification given to a 
virtual machine depending on this virtual machine's 
processing characteristics. When a virtual machine 
usually uses all its allocated time slice, it is 
classified as being noninteractive or compute bound. 
See also interactive. 

non-resident pages. Pages whose contents are on 
DASD but not in real storage. A page is considered 
nonresident when an attempt to load its real address 
returns a nonzero condition code. 

I;l 
L:J 

page frame. A block of 4096 bytes of real storage. 

page table. A table in CP that indicates whether a 
page is in real storage and matches virtual 
addresses with real storage addresses. 

preferred paging area. A special area of auxiliary 
storage where frequently used pages are paged out. 
It provides high speed paging. 

prefix storage area (PSA). a page zero of real 
storage that contains machine-used data areas and 
CP global data. 

program status word (PSW). An area in storage 
used to indicate the order in which instructions are 
executed, and to hold and indicate the status of the 



computer system. Synonymous with processor 
status word. 

program temporary fix (PTF). A temporary 
solution or by-pass of a problem diagnosed by IBM 
field engineering as the result of a defect in a 
current unaltered release of the program. 

PSA. Prefix storage area. 

PSW. Program status word, or processor status 
word. 

PTF. Program temporary fix. 

queue-add. The action by the system scheduler, 
DMKSCH, of placing a runnable virtual machine on 
the list of virtual machines that can be given 
control of a processor. 

queue-drop. The action by the system scheduler, 
DMKSCH, of removing a virtual machine from the 
list of virtual machines that can be given control of 
a processor. 

real machine. The actual processor, channels, 
storage, and I/O devices required for operation of 
VM/SP. 

S-disk. See CMS system disk. 

S-STAT. A block of storage that contains the file 
status tables (FSTs) associated with the S-disk. The 
FSTs are sorted so that a binary search can be used 
to search for files. The S-STAT usually resides in 
the CMS nucleus so it can be shared. Only files 
with filemode of 2 will have their associated FSTs 
in the S-STAT. 

segment. A contiguous 64K area of virtual storage 
(not necessarily contiguous in real storage) that is 
allocated to virtual m~chine or CPo 

segment table. A table used in dynamic address 
translation to control user access to virtual storage 

segments. Each entry indicates the length, location, 
and availability of a corresponding page table. 

shadow page table. A table that maps real 
storage allocations (first level storage) to a virtual 
machine's virtual storage (third level storage) for 
use by the real machine in its paging operations. 

spool, spooled, spooling. Relates to the reading 
of input data streams and the writing of output data 
streams on auxiliary storage devices. 

standalone dump. A program used to print the 
contents of storage that runs in a virtual machine 
not under control of an operating system such as 
CMS. 

system profile. The system profile is an EXEC, 
SYSPROF EXEC, that resides in a DCSS 
(discontiguous saved segment) or on a system disk 
and is called by CMS initialization. It contains 
some initialization function and provides a means 
for installations to override the default CMS 
environment by tailoring the EXEC to suit the 
installation. 

time sharing. Sharing of computer time and 
resources. 

virtual address. An address that refers to virtual 
storage or a virtual I/O device address. It must, 
therefore, be translated into a real storage or I/O 
device address when it is used. 

virtual disk. A logical subdivision (or all) of a 
physical disk storage device that has its own 
address, consecutive storage space for data, and an 
index or description of the stored data so that the 
data can be accessed. A virtual disk is also called a 
minidisk. 

virtual machine. A functional simulation of a 
computer and its associated devices. 

Virtual Machine Communication Facility 
(VMCF). A CP function that provides a method of 
communication and data transfer between virtual 
machines operating under the same VM/SP systems: 

Glossary of Terms and Abbreviations 393 



virtual storage. Storage space that can be 
regarded as addressable main storage by the user of 
a computer system in which virtual addresses are 
mapped into real addresses. The size of virtual 
storage is limited by the addressing scheme of the 
computing system and by the amount of auxiliary 
storage available, and not by the actual number of 
main storage locations. 

394 VM/SP eMS for System Programming 

Y -disk. An extension of the eMS system disk. 

Y-STAT. A block of storage that contains the file 
status tables (FSTs) associated with the V-disk. The 
FSTs are sorted so that a binary search can be used 
to search for files. The Y-STAT usually resides in 
the eMS nucleus so it can be shared. Only files 
with filemode of 2 will have their associated FSTs 
in the Y-STAT. 

/ 



Here is a list of IBM books that can help you use your system. If you don't see 
the book you want in this list, you might want to check the IBM System/370, 30xx, 
and 4300 Processors Bibliography, GC20-0001. 

o Prerequisite Publications 

IBM System/360 Principles of Operation, GA22-6821 

IBM System/370 Principles of Operation, GA22-7000. 

Q Books About VM/SP 

Virtual Machine/System Product: 

CP for System Programming, SC24-5285 

Transparent Services Access Facility Reference, SC24-5287 

General Information, GC20-1838 

Introduction, GC19-6200 

CMS Command Reference, SC19-6209 

CMS User's Guide, SC19-6210 

Installation Guide, SC24-5237 

System Messages and Codes, SC19-6204 

OLTSEP and Error Recording Guide, SC19-6205 

Terminal Reference, SC19-6206 

Library Guide, Glossary, and Master Index, SC19-6207 

Operator's Guide, SC19-6202 

EXEC 2 Reference, SC24-5219 

System Product Editor User's Guide, SC24-5220 

System Product Editor Command and Macro Reference, SC24-5221 

System Product Interpreter User's Guide, SC24-5238 

System Product Interpreter Reference, SC24-5239 

Virtual Machine 

System Facilities for Programming, SC24-5288 

Bibliography 395 



Diagnosis Guide, LY24-5241 

Running Guest Operating Systems, 8C19-6212 

Note: The V1'.l/SP Library Guide, Glossary, and Master Index, GC19-6207 
describes all the VM/8P books and contains an e~panded glossary and 
master index to all the books in the VM/8P library. 

• Other Publications 

IBM VM/SP Programmer's Guide to the Server-Requester Programming 
Interface for VM/ SP, 8C24-5291 

IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer 
Control Unit Component Description and Operator's Guide, GA24-3543 

IBM 3262 Printers 1 and 11 Component Description, GA24-3733 

IBM 3270 Information Display System Library User's Guide, GA23-0058 

IBM Virtual Machine Facility/B70: Performance/Monitor Analysis 
Program,8B21-2101 

ACF/VTAM 

VT AM General Information (for VM), GC30-3246 

Network Program Products Planning, 8C23-0110 

VTAM Installation and Resource Definition, 8C23-0111 

VT AM Customization, 8C23-0112 

VTAM Operation, 8C23-0113. 

VM/8P Remote 8pooling Communications 8ubsystem Networking (R8C8 
Networking) Version 2 

Planning and Installation, 8H24-5057 

Operation and Use, 8H24-5058 

Diagnosis Reference, L Y24-5228 

VM/SP Data Areas and Control Block Logic, 

Volume 2 Conversational Monitor System (CMS), LY24-5221 

VM/ SP System Logic and Problem Determination, 

Volume 2 Conversational Monitor System (CMS), L Y20-0893 

OS/ VS Data Management Macro Instructions, GC26-3793 

OS/VS Supervisor Service and Macro Instructions,GC27-6979 

If you use the IBM 3767 Communication Terminal as a virtual machine console, 
the IBM 3767 Operator's Guide, GA18-2000 may also be helpful. 

396 VM/8P eM8 for 8ystem Programming 



Note: References in text to titles of corequisite VMjSP Entry and VM/SP 
publications are given in abbreviated form. 

Bibliography 397 



The VM/SP Library (Part 1 of 3) 

Evaluation Index 
Z /' '/ 

General Introduction Library 
Information Guide, 

Glossary, and 
Master Index 

GC20-1838 
V 

GC19-6200 
V 

GC19-6207 V 

Planning Installation 
/' '/ /' /' /' 

Planning Running Release 5 Distributed Installation 
Guide and Guest Guide Data Guide 
Reference Operating Processing 

Systems Guide 

SC19-6201 V GC19-6212 I SC24-5290 ~ SC24-5241 I SC24-5237 I 

Applications Operation 
/' '/ /' 

Application Programmer's Operator's 
Development Guide to the Guide 
Guide SRPI 

for VM/SP 

SC24-5247 I SC24-5291 I SC19-6202 V 

Reference Summaries To order all of the Reference Summaries. use order number SBOF-3242 

Commands 
(General User) 

SX20-4401 

CMS Primer 
Summary of 
Commands 

SX24-5151 

Commands 
(Other than 
General User) 

SX20-4402 

CMS Primer 
Line-Oriented 
Summary of 
Commands 

SX24-5159 

398 VM/SP eMS for System Programming 

SP Editor 
Command 
Reference 
Summary 

SX24-5122 

Problem 
Reporting 
Summary 
(Poster) 

SX24-5171 

EXEC 2 Sys.Prod 
Reference Interpreter 
Summary Reference 

Summary 

SX24-5124 SX24-5126 

Summary of 
End Use 
Tasks and 
Commands 
(Poster) 

SX24-5173 

,/ 



Tho "r~~/slP library (IPQr~ 2 of 3) 

End Use 
'/ /' /' '/' /' /' 

Terminal CMS CMS Primer CMS CMS CMS 
Reference Primer for Line- User's Command Macros and 

Oriented Guide Reference Functions 
Terminals Reference 

GC19-6206 V SC24-5236 I SC24-5242 V SC19-6210 I SC19-6209 
I 

SC24-5284 I 

/' /' '/ '/ L '/ 

System System System System EXEC 2 CP 
Product Product Product Product Reference Command 
Editor Editor Interpreter Interpreter Reference 
User's Guide Command and User's Guide Reference 

Macro 
Reference 

SC24-5220 V 
SC24-5221 

I 
SC24-5238 

V 
SC24-5239 

V 
SC24-5219 

V 
SC19-6211 

V 

'/ 

Quick 
Reference 

SX20-4400 
I 

Diagnosis 
/' /' /' /' '/ /' 

System System Service Problem VM GCS 
Messages Messages Routines Reporting Diagnosis Diagnosis 
and Codes Cross- Program Guide Guide Reference 

Reference Logic 

SC19-6204 II 
SC24-5264 

V LY20-0890 
I SC24-5282 V LY24-5241 V LY24-5239 V 

L /' '/ /' /' 

Problem Data Areas Problem Data Areas OLTSEP VM 
Determination and Control Determination and Control and Error Problem 
Vol. 1 (CP) Blocks Vol. 2 (CMS) Blocks Recording Determination 

Vol. 1 (CP) Vol. 2 (CMS) Guide Reference 
Information 

LY20-0892 LY24-5220 LY20-0893 LY24-5221 SC19-6205 LX23-0347 
/ IJ V IJ I 

VM 
CP Internal 
Trace Table 
(Poster) 

LX24-5202 

Bibliography 399 



The Vrtll!SP Llbrsry (Psrt 3 of 3) 

Administration 
/' ~ /' 

VM CP for CMS for 
System System System 
Facilities Programming Programming 
for 
Programming 

SC24-5288 I SC24-5285 I 
SC24-5286 

Auxiliary Communication Support 
/' 

VTAM 
Installation 
and Resource 
Definition 

SC23-0111 

/' 

/' 

"/ 

VTAM 
Programming 

SC23-0115 

RSCS 
Noh-/orking 
Version 2 
General 
Information 

GH24-5055 

VM/Pass
Through 
Facility 
General 
Information 

I 

V 

V 

GC24-5206 V 

~ 

VTAM 
Customization 

SC23-0112 

"/ 

VTAM 
Diagnosis 
Guide 

SC23-0116 

/' 

RSCS 
Networking 
Version 2 
Planning and 
Installation 

SH24-5057 

VM/Pass
Through 
Facility 
Guide and 
Reference 

V 

V 

I 

SC24-5208 
,L..-____ ..rl 

400 VM/SP eMS for System Programming 

/' 

VTAM 
Operation 

SC23-0113 

"/ 

VTAM 
Diagnosis 
Reference 

LY30-5582 

/' 

RSCS 
Networking 
Version 2 
Operation 
and Use 

SH24-5058 

/' 

VM/Pass
Through 
Facility 
Logic 

V 

V 

V 

LY24-5208 
,1--____ -11 

/' '/ 

TSAF GCS 
Reference Command 

and Macro 
Reference 

V 
SC24-5287 V SC24-5250 

I 

/' 

VTAM VTAM Messages Reference and Codes Summary 

SC23-0135 

SC23-0114 I 

"/ 

VTAM 
Data 
Areas (VM) 

LY30-5583 
V 

"/ 

RSCS RSCS 
Networking Networking 
Version 2 Version 2 
Diagnosis Ref. Summary 
Reference 

SX24-5135 
LY24-5228 I 

,/ 



I Special Characters I 
+ and - subcommands of DUMPS CAN command 

See DIAG 
&name subcommand of DUMPS CAN command 

See DIAG 
$$BCLOSE transient 268 
$$BDUMP transient 268 
$$BOPEN transient 268 
$$BOPENR transient 268 
$$BOPNLB transient 268 
$$BOPNR2 transient 268 
$$BOPNR3 transient 268 
$$BOSVLT transient 269 
$LISTIO EXEC file 217 
*BLOCKIO (DASD Block I/O System Service) 

See SFPROG 
*CCS (SNA Console Communication Services) 

See SFPROG 
*LOGREC (Error Logging System Service) 

See SFPROG 
*MSG (Message System Service) 

See SFPROG 
*MSGALL (Message All System Service) 

See SFPROG 
*NCCF 

See SFPROG 
*SIGNAL (Signal System Service) 

See SFPROG 
*SPL (Spool System Service 

See SFPROG 
/ / record 176, 231 
/JOB control cards 335 
? subcommand of DUMPSCAN command 

See DIAG 

abend (abnormal termination) 
clearing file definitions 166 
CMS abend 

exit routine processing, CMS 5 
processing 5 
recovery 6 

DMSABW CSECT 5 
information available 5 

releasing storage 26 
ABEND macro 

See DIAG 
ABEND macro (SVC 13) 193 
abend messages 

See DIAG 
abend recovery process 6 
abend, reason for 

See DIAG 
ABENDs 

See also DIAG 
CMS abend 

exit routine processing, CMS 5 
processing 5 
recovery 6 

ABNEXIT macro 5, 351 
abnormal termination (abend) 

See abend (abnormal termination) 
abnormal termination procedures 

See DIAG 
ACCEPT, IUCV and logical device support facility 

See SFPROG 
ACCESS command 

accessing OS data sets 161 
format of 162 
modules included in resident directory 339 
response when you access VSAM disks 278 
used with OS disks 159 

access device dependent information DIAGNOSE 
code X'8C' 

See SFPROG 
access diagnostic information saved for protected 

application facility users DIAGNOSE code X'BO' 
See SFPROG 

access method services (AMS) 
control statements, executing 276 
DEFINE CLUSTER statement 305 
DEFINE control statement 305 
DEFINE USERCATALOG 287 
defining a master catalog 286 
defining OS input/output files 294 
DELETE control statement 305 
executing in CMS, examples 304 
functions 

EXPORT 307 
IMPORT 307 
REPRO 307 

in CMS 273 
in CMS/DOS 284 
restrictions on using for OS and VSE users 274 

These symbols are used in the index to refer to other VM and VM/SP books: . . . . 
CPPROG-VM/SP CP for System Programming SFPROG-VM System FaclhtIes for Programmmg 
DIAG-VM Diagnosis Guide Index 401 



return codes 277 
terminal sessions 369 
using tape input/output 292, 303 

access method supported by OS 199 
accessing 

access method services 276 
directories of VSE libraries 224 
DOS disks 211 
OS disks 159 
VSE system residence volume 208 

accounting 
See CPPROG 

ACF/VTAM, VM/SP SNA support 
See SFPROG· 

action routines 
See SFPROG 

ACTION, VSE linkage editor control 
statement 241 

activating the TOD-clock accounting interface 
DIAGNOSE code X'70' 

See SFPROG 
active disk table (ADT) 341 

signalling preferred filetypes 3 
ADDENTRY macro 351 
adding 

language information for an application 
See SFPROG 

member to MACLIBs 173,228 
ADSTOP command 

See DIAG 
ADT (active disk table) 341 

signalling preferred filetypes 3 
ALL subcommand of TRAPRED command 

See DIAG 
allocating 27 

extents on OS disks 295 
space for VSAM files (CMS/DOS) 290 
space for VSAM files (OS) 300 
storage 32 
VSAM extents on OS disks and minidisks 295 

alter contents of storage 
See DIAG 

altering storage contents 
See DIAG 

alternate userid DIAGNOSE code X'D4' 
See SFPROG 

AMS (access method services) 
control statements, executing 276 
DEFINE CLUSTER statement 305 
DEFINE control statement 305 
DEFINE USERCATALOG 287 
defining a master catalog 286 
defining OS input/output files 294 
DELETE control statement 305 
executing in CMS, examples 304 
functions 

EXPORT 307 
IMPORT 307 
REPRO 307 

in CMS 273 

402 VM/SP CMS for System Programming 

in CMS/DOS 284 
restrictions on using for OS and VSE users 274 
return codes 277 
terminal sessions 369 
using tape input/output 292, 303 

AMSERV command 
creating tape files 303 
files, examples 276 
filetype 276 
format of 276 
functions under CMS 304 
output listings 277 
using to read tapes 303 

APAR command 
See DIAG 

APARs (Authorized Program Analysis Reports) 
See DIAG 

APPC/VM synchronous event (type X'DC') entry 
See DIAG 

appending data to existing files 166 
APPLMSG macro 351 
AREGS subcommand of DUMPSCAN command 

See DIAG 
ARIOBLOK subcommand of DUMPSCAN command 

See DIAG 
ASSEMBLE command 

example of 66 
output files produced 239 

assembler language macros 
supported by VSE 236 

assembler programs 
OS programs in CMS 65 
overriding default definitions using ddnames 65 
programs in CMS/DOS 238 
source files, from OS disks 65 
VSAM programs in CMS 274 

assembler virtual storage 
requirements 345 

ASSGN command 
assigning programmer logical unit 214 
description 209 
using to assign logical units 214 

assigning 
disk devices 218 
entering before program execution 245 
physical devices 218 
to a virtual device 218 

ATTACH macro (SVC 42) 195 
attached processor mode (AP) 

See CPPROG 
AUTHORIZE VMCF function 

See SFPROG 
auxiliary directories 

adding 339 
creating 340 
DMSLADAD entry point 341 
establishing linkage 341 
GENDIRT command 340 
generating 339 



initializing 340 
saving resources 339 
usage 339 

auxiliary files 
description of 104 
preferred 108 

auxiliary processing routine to receive control 
during I/O operation 167 

AUXPROC option of FILEDEF command 167 

batch facility 
/JOB control cards 335 
BATEXIT1 routine 335 
BATEXIT2 routine 335 
BATLIMIT MACRO file 335 
data security 336 
description 333 
EXEC procedures 336 
installation input 335 
installing 334 
IPL performance 336 
resetting system limits 334 
system limits 334 
user-specified control language 335 

BATEXIT1 routine 335 
BATEXIT2 routine 335 
BATLIMIT macro 335,351 
BDAM 

restrictions on 202 
support of 188, 200 

BEGIN command 
See DIAG 

BLDL macro (SVC 18) 193 
BLIP character 13 
BLKSIZE (blocksize) 

512, 1024, 2048, 4096 bytes 2 
800 bytes 2 

BLOCK option of FILEDEF command 165 
*BLOCKIO 

See SFPROG 
blocksize (BLKSIZE) 

See BLKSIZE (blocksize) 
books copied from DOS/VSE source statement 

libraries 220 
BOTTOM subcommand of TRAPRED command 

See DIAG 
BPAM 

support of 188, 200 
branch entry Freemain (type X'OB') entry 

See DIAG 
branch entry Getmain (type X'OA') entry 

See DIAG 
breakpoint setting 

See DIAG 

BSAM/QSAM 
support of 188, 200 

BSP macro (SVC 69) 198 
buffers used by FSCB 78 
BUFSP option 

in CMS/DOS 285 
of the DLBL command 295 

C subcommand of DUMPS CAN command 
See DIAG 

calculating storage available in your virtual 
machine 246 

CALL command 237 
CALL macro 198 
calling IBM for assistance, data needed 

See DIAG 
CANCEL command 237 
CANCEL VMCF function 

See SFPROG 
canceling 

DLBL definitions 220 
user-written immediate commands 155 

CAT option 285 
of the DLBL command 295 

catalogs 
clearing 289 
defining in CMS/DOS 286 
identifying in CMS/DOS 287 
IJSUC ddname 288 
job 288, 299 
master 297 
passwords 289, 299 
sharing 279 
user 298 
user in CMS/DOS 287 
verifying a structure 289, 300 
VSAM 285, 289, 296 

catalogued procedures in OS equivalent in 
CMS 158 

CATCHECK command 
verifying a catalog structure 289, 300 

*CCS 
See SFPROG 

CHAIN subcommand of DUMPSCAN command 
See DIAG 

changes, summary of 379 
channel program modification DIAGNOSE code 

X'28' 
See SFPROG 

CHAP macro (SVC 44) 195 
CHECK macro 198 
CHKPT macro (SVC 63) 197 
class override file 

These symbols are used in the index to refer to other VM and VM/SP books: 
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming 
DIAG-VM Diagnosis Guide 

Index 403 



See CPPROG 
classes of user privilege 

See CPPROG 
clean-up after virtual IPL by device DIAGNOSE 

code X'40' 
See SFPROG 

clear error recording DIAGNOSE code X'lC' 
See SFPROG 

clearing 
DLBL definitions 220 
effect on FILEDEF definitions 166 
FILEDEF definitions 166 
job catalogs in CMS/DOS 289 
job catalogs in OS 299 

CLOSE function for SPOOL system service 
See SFPROG . 

CLOSE/TCLOSE macro (SVC 20/23) 194 
closing 

CMS files after reading or writing 81 
virtual unit record devices 85 

clusters 
defining 305, 306 
deleting 306 
suballocated 305 
unique 306 

. CMD command used by programmable operator 
See SFPROG 

CMD option of the PER command 
See DIAG 

CMS (Conversational Monitor System) 
See also Conversational Monitor System (CMS) 
abnormal termination 

exit routine processing 5 
processing 5 
recovery 6 

batch facility 333 
called routine modifications to system area 62 
command language 1 
command processing 56 
command search function 58 
commands 

ACCESS 161 
GENDIRT 340 
IPL 323 
OS program development 4 
used with OS data sets 159 
VSE program development 4 

description of . 1 
devices supported 21 
DEVTAB (device table) 21 
DISPW macro 93 
DMSNUC 21 
EXECs 

opening and closing files 81 
to execute OS programs 73 

file system 2 
filemode 2 
filename 2 
filetype 2 
free storage management 23 

404 VM/SP CMS for System Programming 

function of 1 
how to save it 3~1 
initialization 322 
interface with display terminals 88 
interrupt handling 9 
introduction 1 
loader tables 16 
macros 

ABNEXIT 5 
DISPW 93 
DMSEXS 41 
DMSFREE 15, 27 
DMSFRES 35 
DMSFRET 33 
DMSFST 339 
DMSKEY 39 
examples 84 
FS.CB 75 
GETMAIN 16 
list of 351 
STRINIT 24 
usage· 75 

managing files 2 
modules 

DMSABN 5 
DMSINA 54 
DMSINT 55 
DMSIOW 11 
DMSITE 13 
DMSITI 10 
DMSITP 13 
DMSITS 9,43 
DMSLAD 341 
DMSPAGE 34 

nucleus 16 
OS simulation 157 
OS support 273 
overlay structures 345 
program development 3 
PSW keys 39 
register restoration 62 
register usage 43 
returning to called routine 61 
saved system restrictions 321 
simulation of VSE functions 249 
storage 

DMSEXS macro 41 
DMSFREEmacro 15 
DMSFRES macro· 35 
DMSFRET macro 33 
DMSKEY macro 39 
map 17 
STRINIT macro 24 
structure 15 
using 15 

SUB COM func'tion 59 
support for OS 273 
support for VSAM 273 
SVC handling 43 

/ 



symbol references 21 
system save area modification 62 
tape volume switching 204 
transient area 15 
transient program area 23 
user program area 23 
USERSECT (user area) 21 
using as compilers 4 
using as data sets 159 
using VSE compilers 4 
VSAM support 273 
VSE macros 250 
VSE simulation 207 
what it provides 1 
XEDIT 2 

CMS abend dump reading 
See DIAG 

CMS abend recovery function 
See DIAG 

CMS control block relationship 
SeerDIAG 

CMS d~bugging 
See DIAG 

CMS dump file printing 
See DIAG 

eMS IUCV 
See SFPROG 

CMS loader, controlling 68 
CMS subcommand of DUMPS CAN command 

See DIAG 
CMS/DOS 

commands 209 
considerations for execution 272 
control blocks simulated by 269 
DOSLKED command 240 
DTFCD macro 259 
DTFCN macro 261 
DTFDI macro 261 
DTFMT macro 262 
DTFPR macro 264 
DTFSD macro 265 
entering the environment 208 
EXCP support 269 
extents 291 
generating 270 
invoking linkage editor 240 
libraries 270 
library volume directory entries 271 
options 

BUFSP 285 
CAT 285 
EXTENT 285 
MULT 285 
VSAM 285 

performance 272 
physical IOCS macros 250 
program development using 207 
relationship to CMS and VSE 207 

restrictions 272 
SVC support routines 250 
terminology 207 
user responsibilities 270 
using tape input/output 292 
VM/SP directory entries 271 
VSE I/O macros 249 
VSE supervisor macros 249 
VSE transients simulation 268 
VSE volumes needed 271 
VSE/VSAM macros supported 311 

CMSDEV macro 351 
CMSIUCV macro 351 

See also SFPROG 
CMSLEVEL macro 351 
CMSLIB MACLIB 180 
CMSPOINT subcommand of DUMPS CAN command 

See DIAG 
Goding conventions 

See CPPROG 
collecting CP data 

See DIAG 
collecting virtual machine data 

See DIAG 
command access in CP 

See CPPROG 
command language, CMS 1 
command syntax files, updating 

See SFPROG 
commands 

ACCESS 159 
AMSERV 276 
ASSEMBLE 65 
ASSGN 209 
CALL 237 
CANCEL 237 
CMS/DOS 209 
DDR 159 
developing 113 
DLBL 159 
DLBL command 209 
DOSLIB 209 
DOSLKED 209 
DOSPLI 209 
DSERV 209 
entered from a terminal 55 
ESERV 209,223 
FCOBOL 209 
FETCH 209 
FILEDEF 159 
GENMOD 209 
GLOBAL 209 
IPL 323 
LISTDS 159 
LISTIO 209 
LKED 159 
LOADMOD 209 
MOVEFILE 159 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-VMjSP CP for System Programming SFPROG-VM System Facilities for Programming 
DIAG-VM Diagnosis Guide 

Index 405 



OPTION 209 
processing 54, 56 
PSERV 209, 222 
QUERY 210 
RELEASE 159 
RSERV 210, 222 
SAVEFD 328 
search function 58 
search hierarchy for 54 
SET 210 
SSERV 210, 221 
STATE 159 

COMMENT statement 98 
compilers 

devices assigned 216 
input/output assignments 216 

compressing 
DOSLIB files 243 
members of a MACLIB 174,229 

COMPSWT macro 351 
configuration file for GCS 

See DIAG 
CONNECT IUCV function 

See SFPROG 
connection complete external interrupt in IUCV 

See SFPROG 
connection pending external interrupt in IUCV 

See SFPROG 
connection quiesced external interrupt in IUCV 

See SFPROG 
connection resumed external interrupt in IUCV 

See SFPROG 
connection severed external interrupt in IUCV 

See SFPROG 
console facility 88 
CONSOLE function 

I/O interrupts 10 
CONSOLE macro 12, 88, 90, 351 
control blocks 

simulated by CMS/DOS 269 
types 

VSE supervisor 269 
used by CMS/DOS routines 269 

control file 
description 103 
for a national language 

See SFPROG 
updating example 106 

control register allocation 
See DIAG 

control registers 
See DIAG 

control statements 
COMMENT statement 99 
DELETE statement 98 
in AMSERV file 276 
INSERT statement 98 
REPLACE statement 98 
SEQUENCE statement 98 
used by UPDATE command 97 

406 VM/SP CMS for System Programming 

controlling PA2 program function key DIAGNOSE 
code X'54' 

See SFPROG 
Conversational Monitor System (CMS) 

See also CMS (Conversational Monitor System) 
abnormal termination 

exit routine processing 5 
processing 5 
recovery 6 

batch facility 333 
called routine modifications to system area 62 
command language 1 
command processing 56 
command search function 58 
commands 

ACCESS 161 
GENDIRT 340 
IPL 323,324 
OS program development 4 
used with OS data sets 159 
VSE program development 4 

description of 1 
devices supported 21 
DEVTAB (device table) 21 
DISPW macro 93 
DMSNUC 21 
EXECs 

opening and closing files 81 
to execute OS programs 73 

file system 2 
filemode 2 
filename 2 
filetype 2 
free storage management 23 
function of 1 
how to save it 321 
initialization 322 
interface with display terminals 88 
interrupt handling 9 
introduction 1 
loader tables 16 
macros 

ABNEXIT 5 
DISPW 93 
DMSEXS 41 
DMSFREE 15, 27 
DMSFRES 35 
DMSFRET 33 
DMSFST 339 
DMSKEY 39 
examples 84 
FSCB 75 
GETMAIN 16 
list of 351 
STRINIT 24 
usage 75 

managing files 2 
modules 

DMSABN 5 



DMSINA 54 
DMSINT 55 
DMSIOW 11 
DMSITE 13 
DMSITI 10 
DMSITP 13 
DMSITS 9,43 
DMSLAD 341 
DMSPAGE 34 

nucleus 16 
OS simulation 157 
OS support 273 
overlay structures 345 
program development 3 
PSW keys 39 
register restoration 62 
register usage 43 
returning to called routine 61 
saved system restrictions 321 
simulation of VSE functions 249 
storage 

DMSEXS macro 41 
DMSFREE macro 15 
DMSFRES macro 35 
DMSFRET macro 33 
DMSKEY macro 39 
map 17 
STRINIT macro 24 
structure 15 
using 15 

SUBCOM function 59 
support for OS 273 
support for VSAM 273 
SVC handling 43 
symbol references 21 
system save area modification 62 
tape volume switching 204 
transient area 15 
transient program area 23 
user program area 23 
USERSECT (user area) 21 
using OS compilers 4 
using OS data sets 159 
using VSE compilers 4 
VSAM support 273 
VSE macros 250 
VSE simulation 207 
what it provides 1 
XEDIT 2 

CONVERT command 
See DIAG 

CONVIPCS EXEC 
See DIAG 

COpy files adding to MACLIBs 173, 228 
copying 

books from VSE source statement libraries 220 
DOS cataloged procedure 222 
DOS files into CMS files 213 

macros from VSE libraries to add to CMS 
MACLIB 228 

members of MACLIBs 176 
members of OS partitioned data set with 

FILEDEF 170 
modules from VSE library or SYSIN tapes 213 
modules from VSE relocatable libraries 222 
OS data sets into CMS files 169 
VSAM files into CMS disk files 307 

core image 
libraries, using in CMS/DOS 225 
on a DOS disk 244 
VSE libraries 270 

CORTABLE subcommand of DUMPSCAN command 
See DIAG 

COUNT subcommand of the PER command 
See DIAG 

CP (Control Program) 
See CPPROG 

CP abend dumps, reading 
See DIAG 

CP data, recording 
See DIAG 

CP debugging' 
See DIAG 

CP FRET Trap 
See DIAG 

CP internal trace table 
See DIAG 

CP message repository 
See SFPROG 

CP SET DUMP command 
See DIAG 

CP system services 
See SFPROG 

CP trace table entries, recording 
See DIAG 

CPEREP program 
See DIAG 

CPPROG 
See VM/SP CP for System Programming 

CPRB macro 351 
CPTRAP command 

See DIAG 
CPTRAP facility 

See DIAG 
CQYSECT macro 351 
creating 

CMS files from DOS libraries 213 
DOSLIB files 242 
file from DOS disks and tapes 213 
immediate commands 154 
macro libraries 

example in CMS/DOS 226 
from a DOS library 226 

modules from VSE library or SYSIN tapes 213 
CSIYTD control program 

See DIAG 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-VMjSP CP for System Programming SFPROG-VM System Facilities for Programming 
DIAG-VM Diagnosis Guide 

Index 407 



CSMRETCD macro 351 
CUSTOMER PROFILE file 

See DIAG 
CVTSECT (CMS Communications Vector Table) 

See DIAG 
cylinder 

on 2314/2319 disk 296 
on 3330 disk 297 

DASD Block I/O System Service 
See SFPROG 

DASD Dump/Restore (DDR) program 
See DIAG 

data catalog sharing 279 
data control block (DCB) 

See DCB (data control block) 
data extraction routine 

See DIAG 
data management 

See DIAG 
data needed before calling IBM for assistance 

See DIAG 
data security in batch facility 336 
Data Set Control Block (DSCB) 199 
data sets 

creating files 170 
format of 160 
identify VSAM 294 
OS 159 
reading, OS 161, 203 
specifying a member name 166 
VSAM, compatibility considerations 312 

data sheet, problem inquiry 
See DIAG 

DCB (data control block) 
exit 165 
relationship to FILEDEF command 162 

DCB macro 198 
DCP command 

See DIAG 
DCSS (discontiguous shared segment) 

. file directory information for shared disk 328 
installation 55 
placing Editor macros in 331 
placing EXECs in 331 

ddnames 
IJSCT 296 
IJSUC 288, 299 
IJSYSCT 285 
in OS VSAM programs, restricted to seven 
characters in CMS 284 

specifying with FILEDEF command 162 
used when assembling source programs 238 

DDR command 159 
DDR program 

408 VM/SP CMS for System Programming 

See DIAG 
de-edi ting VSE macros 223 
DEBUG command 6 
debugging a dump 

See DIAG 
debugging an AP/MP system 

See DIAG 
debugging CMS 

See DIAG 
debugging CP 

See DIAG 
debugging GCS 

See DIAG 
debugging the virtual machine 

See DIAG 
debugging tools summary 

See DIAG 
debugging TSAF 

See DIAG 
debugging, introduction 

See DIAG 
declarative macros 

DTFCD 259 
DTFCN 261 
DTFDI 261 
DTFMT 262 
DTFPR 264 
DTFSD 265 

DECLARE BUFFER IUCV function 
See SFPROG 

default 
DLBL definitions 220 
FILEDEF definition 164 
of MAC LIB MAP command 174 

DEFINE control statement 305 
defining 

cluster for VSAM space 305 
clusters 306 
DOS input files 284 
DOS output files 284 
OS data sets 159 
OS input/output files 294 
space for VSAM files in CMS/DOS 290 
space for VSAM files in OS 300 
unique clusters 306 
user catalogs 298 
VSAM master catalog in CMS/DOS 286 
VSAM master catalog in OS 297 

definition language for command syntax (DLCS» 
See DLCS (definition language for command 

syntax) 
DELENTRY macro 351 
DELETE command 98 
DELETE control statement 305 
DELETE macro (SVC 9) 193 
deleting 

a national language 
See SFPROG 

access method services function 306 



members of a MACLIB 174,228 
VSAM catalogs 306 
VSAM clusters 306 
VSAM spaces 306 

DEQ macro (SVC 48) 196 
DESCRIBE IUCV function 

See SFPROG 
DETACH macro (SVC 62) 197 
determine virtual machine storage size DIAGNOSE 

code X'60' 
See SFPROG 

developing 
commands 113 
message files 145 
OS programs 4 
programs 4 
VSE programs 4 

Device Support Facility 371 
formatting temporary disks 283 

device table (DEVTAB) 21 
device type and features DIAGNOSE code X'24' 

See SFPROG 
device type class and values 

See DIAG 
devices 

assignments in CMS/DOS 214 
for CMS system 21 
I/O assignments 245 
interrupts 12 
output, restrictions in CMS/DOS 218 
specifying type with FILEDEF command 163 
supported by CMS 21 
supported, for VSAM under CMS 319 

devices, disks, cylinders, and tracks 295 
DEVTAB (device table) 21 
DEVTYPE macro (SVC 24) 194 
DIAG 

See VM Diagnosis Guide 
DIAGNOSE code interface with a discontiguous 

shared segment (DCCS) 
See CPPROG 

DIAGNOSE code interface with named segments 
See CPPROG 

DIAGNOSE codes 
See SFPROG 

DIAGNOSE instruction 
See SFPROG 

diagnosing problems 
See DIAG 

directory 
entries 271 
entries for CMS/DOS library volumes 271 

directory update in-place DIAGNOSE code X'84' 
See SFPROG 

discontiguous shared segment (DCSS) 
See CPPROG 
See SFPROG 

Disk Operating System (DOS) 

core image library 244 
creating CMS files 213 
declarative macros 

DTFCD 259 
DTFCN 261 
DTFDI 261 
DTFMT 262 
DTFPR 264 
DTFSD 265 

disks 
accessing 211 
compatibility with OS disks 280 
determining free space 281 
formatting using DSF 283 
using with AMSERV 278 

files used in CMS 211 
for transient routines 268 
hardware devices supported 249 
imperative macros 267 
libraries 

executing phases from 244 
link-editing modules from 241 
size considerations 243 

macros supported in CMS 236 
restrictions on reading in CMS 212 
simulation in CMS 208 
support of physical IOCS macros 250 
terminal sessions 360 
VSE macros under CMS 249 

disks 
extents 295 
read-only, exporting VSAM files from 307 
sharing 3 
temporary 283 

DISP MOD option of FILEDEF command 166 
dispatcher (type X'Ol') entry 

See DIAG 
dispatching virtual machines 

See CPPROG 
DISPLAY command 

See DIAG 
display data on 3270 console screen DIAGNOSE 

code X'58' 
See SFPROG 

display real CP data 
See DIAG 

DISPLAY subcommand of DUMPS CAN command 
See DIAG 

display terminals, CMS interface 88 
display virtual data 

See DIAG 
displaying 

a MACLIB member 230 
directories of VSE libraries 224 
DLBL definitions 220 
lines at terminal, WRTERM macro 84 
listings from access method services 277 

DISPW macro 

These symbols are used in the fndex to refer to other VM and VM/SP books: 
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming 
DIAG-VM Diagnosis Guide 

Index 409 



description of 351 
format of 93 

distributed system use of the programmable 
~~~~ . 

See SFPROG
DL/I programs in CMS/DOS 210

restrictions 211
DLBL command

CMS operand 220
default file definitions 220
description of 209
DSN ? operand 248
entering before program execution 245
how to use in CMS/DOS 218
identifying VSAM data sets 294
identifying VSAM data sets on CMS/DOS 284
IJSYSCT ddname 285
options

BUFSP 295
CAT 295
EXTENT 291,295
MULT 295
VSAM 295

relationship to ASSGN command 218
specifying extents in CMS/DOS 291
specifying multiple extents 301
SYSxxx option 218

DLBL definitions
entering in a CMS EXEC procedure 247
using the HX command 220

DLCS (definition language for command syntax)
coding command syntax 117, 144
coding statements 114
converting a DLCS file 115
creating a DLCS file 130, 132
description of 113
DLCS statement 118
example 115
types of statements 114

DMKSP MACLIB 236
DMMTAB communication table

See DIAG
DMSABN 6
DMSABN macro 5, 351

See also DIAG
DMSABW CSECT 5
DMSEXS macro

description of 351
formatof 41

DMSFRE service routines 35
DMSFREE macro

allocating nucleus free storage 32
allocating storage 27
allocating user free storage 32
description of 351
error codes 37
format of 27
free storage management 27
nucleus free storage 15, 23
storage pointers 29

410 VM/SP CMS for System Programming

TYPE = NUCLEUS parameter 32
TYPE = USER parameter 32
user free storage 15, 23

DMSFRES macro
error codes 37
format of 35

DMSFRET macro
description of 351
error codes 37
format of 33
releasing storage 33

DMSFRT CSECT 29
DMSFST macro

description of 351
format of 339

DMSINA module 54
DMSINT module 6, 55
DMSIOW module 11
DMSITE module 13
DMSITI module 10
DMSITP module 13
DMSITP routine

See DIAG
DMSITS module 9, 43, 63
DMSKEY macro

description of 351
format of 39

DMSLAD module 341
DMSNUC

DEVTAB (device table) 21
structure of 21
USERSECT (user area) 21
within CMS storage 15

DMSP AG module 34
DMSSP MACLIB 180, 235
DMSTVS module 204
DMSXFLPT XEDIT routine 87
DMSXFLRD XEDIT routine 87
DMSXFLST XEDIT routine 86
DMSXFLWR XEDIT routine 87
DOS (Disk Operating System)

core image library 244
creating CMS files 213
declarative macros

DTFCD 259
DTFCN 261
DTFDI 261
DTFMT 262
DTFPR 264
DTFSD 265

disks
accessing 211
compatibility with OS disks 280
determining free space 281
formatting using DSF 283
using with AMSERV 278

files used in CMS - 211
for transient routines 268
hardware devices supported 249

imperative macros 267
libraries

executing phases from 244
link-editing modules from 241
size considerations 243

macros supported in CMS 236
restrictions on reading in CMS 212
simulation in CMS 208
support of physical IOCS macros 250
terminal sessions 360
VSE macros under CMS 249

DOSLIB command
compressing DOSLIBs 242
description of 209

DOSLKED command
description of 209
using 225, 240

DOSLNK files
used by DOSLKED command 241
used in CMS/DOS 241

DOSMACRO MACLIB 181
DOSPLI command 209
DOSPOINT subcommand of DUMPS CAN command

See DIAG
DOWN subcommand of TRAPRED command

See DIAG
DSCB (Data Set Control Block) 199
DSERV command

creating MAP files 224
description of 209
examples 224

DSN operand of DLBL command 219
DSORG option of FILEDEF command 165
DTFCD macro 259
DTFCN macro 261
DTFDI macro 261
DTFMT macro 262
DTFPR macro 264
DTFSD macro 265
dummy data set name specified on FILEDEF

command 163
DUMP command

See DIAG
dump debugging

See DIAG
dump, used in problem determination

See DIAG
DUMPID subcommand of DUMPS CAN command

See DIAG
dumping to DASD

See DIAG
dumping to printer

See DIAG
dumping to tape

See DIAG
DUMPSCAN command and sub commands

See DIAG
DUMPSCAN scroll interface

See DIAG
dynamic linkage 59
dynamic load over lay 347
dynamic loading
. TXTLIB members 70

editing error messages DIAGNOSE code X'5C'
See SFPROG

END subcommand of DUMPS CAN command
See DIAG

end, abnormal
See abend (abnormal termination)

ENQ macro (SVC 56) 196
entering

DLBL definitions in CMS EXEC procedure 247
file identifications 163
lines at terminal, during program execution 84

entry points
determining for program execution 70
displayed following FETCH command 244
specified using OS entry statement 182

EPLIST (extended PLIST)
first form 46
second form 47

EPLIST macro· 351
error codes

DMSFREE 37
DMSFRES 37
DMSFRET 37

Error Logging System Service
See·SFPROG

error messages editing DIAGNOSE code X'5C'
See SFPROG

ESERV command
adding MACRO files created by ESERV
program 223

description of 209
examples 223
using 223

ETRACE command
See DIAG

ETRACE GROUP
See DIAG

examine real storage· DIAGNOSE code X'04'
See SFPROG

examining output listings from access method
services 277

EXCP macro (SVC 0) 192
EXCP supported by CMS/DOS 269
EXEC action routines

See SFPROG
EXEC procedures

entering FILEDEF defintions 73

These symbols are used in the fndex to refer to other VM and VMjSP books:
CPPROG-V~jSP C.P for. System Programming SFPROG-VM System Facilities for Programming
DIAG-VM DIagnosIs GUIde

Index 411

for AMSERV 309
for CMS batch 336
for VSAM 309
in CMS/DOS 247
register contents 248
to execute VSE programs 247
using 73

executing
access method services in EXEC procedure 309
DOS phases 244
DSF programs 283
OS program restrictions 66
phases from core image 244
programs 66
programs in CMS/DOS 243
restrictions

DL/I programs in CMS/DOS 211
OS programs in CMS 66

TEXT files 66, 67
VSAM programs 274
VSE procedures 220

exit routine processing 5
EXIT/RETURN macro (SVC 3) 192
EXPORT access method services function 307
exporting VSAM data sets 307
extended control PSW description

See DIAG
extended PLIST (EPLIST)

See EPLIST (extended PLIST)
EXTENT option of DLBL command 285, 295
extents

allocating on OS disks and minidisk 295
availability of 281
determining for VSAM functions 282
entering in CMS/DOS 291
information when defining VSAM master

catalog 286
multiple in CMS/DOS 291
multiple in OS 301
multivolume 291, 301

External Attribute Buffer (XAB)
See SFPROG

external interrupt (type X'02') entry
See DIAG

external interrupts
See also CPPROG
BLIP character 13
HNDEXT macro 13
timer 13

external interrupts in IUCV
See SFPROG

external references, resolving 68
external tracing facilities, GCS

See DIAG
extra references

resolving 68
EXTRACT macro (SVC 40) 195
extracting a member from a MACLIB 175

412 VM/SP CMS for System Programming

FBD (file block descriptor) 30, 31
FCB (file control block) 43
FCOBOL command 209
FDISPLA Y subcommand of DUMPS CAN command

See DIAG
FEEDBACK command used by programmable

operator
See SFPROG

feedback file
See SFPROG

FEOV macro (SVC 31) 195
FETCH command

description of 209
loading phases in CMS/DOS 225
START option 244

fetching core image phases for execution in
CMS/DOS 244

file block descriptor (FBD) 30, 31
file control block (FCB) 43
file directory information 328
file status table (FST)

See FST (file status table)
file system 2
file system control block (FSCB)

See FSCB (file system control block)
FILEDEF command

AUXPROC option 167
BLOCK option 165
default definition 164
device type, specifying 163
DISP MOD option 166
DSORG option 165
dummy data set name specified 163
entering file identifications 163
establishing a file definition for a member 230
file format, specifying 165
guidelines for entering 162
how to use 162
issued by assembler, overriding 238
MEMBER option 166
options

AUXPROC 167
BLOCK 165
DISP MOD 166
DSORG 165
MEMBER 166
PERM 166
RECFM 165
SYSPARM 168

override default file definitions 65
PERM option 166
RECFM option 165
SYSP ARM option" 168
used with OS data sets 159

FILEDEF defintions
clearing 166

displaying 67
making with FILEDEF command 162

filemode 2
filename 2
files

auxiliary 104
blocksize (BLKSIZE) 2
closing 81
creating from DOS libraries 213
creating from OS data sets 170
defining 284
defining and allocating space 300
defining OS input and output 294
deleting records 98
described by FSCB 75
DOS 211
format information 165
format, specifying on FILEDEF command 165
handling OS data residing on CMS disks 188
handling OS data residing on OS disks 189
identification 2, 219
inserting records 98
management, CMS 2
manipulating 3, 75
multivolume identification 292, 302
opening 81
output produced by ASSEMBLE command 239
reading 79
reading VSAM tape 294
replacing records 98
sequence numbers in source files 97
size, determining 2
support of OS format 199
VSAM, allocating 290
VSAM, defining 290
writing 79

filetype
preferred 3
used in file identification 2

FIND macro (SVC 18) 194
finding discontiguous shared segment DIAGNOSE

code X'64'
See SFPROG

FINDSYS function
See SFPROG

FOB (font offset buffer)
See CPPROG

foreign languages
See SFPROG

FORMAT subcommand of TRAPRED command
See DIAG

formatting
files 165
OS and DOS disks 283
temporary disks 283

free chain element format 31
free storage

DMSFREE macro- 27

G ETMAIN macro 24
managing 23
nucleus 23
user 23

FREEDBUF macro (SVC 56) 196
FREELOWE 246
FREEMAIN macro

releasing storage 26
FREEMAIN macro (SVC 5) 192
Freemain via SVC (type X'09') entry

See DIAG
FREETAB storage table 28
FREEWORK (DMKFRE and DMKFRT save area)

See DIAG
FRERESPG 246
FSCB (file system control block)

creating 75
fields defined 75
format of 75
modifying for read/write operations 78, 79
using 78
using with I/O macros 79

FSCB macro
creating 75
description of 352

FSCBD macro
description of 352
generating DSECT for FSCB 80

FSCLOSE macro
description of 352
example 81

FSERASE macro
description of 352
usage 82

FSOPEN macro 352
FSPOINT macro 352
FSREAD macro

description of 352
example 79
reading disk files 79

FSST ATE macro 352
FST (file status table) 158, 339
FSWRITE macro

description of 352
example 80
writing disk files 79

full-screen console service 88

G subcommand of DUMPS CAN command
See DIAG

GCS configuration file
See DIAG

GCS debugging

These symbols are" used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming
DIAG-VM Diagnosis Guide

Index 413

See DIAG
GCS dumping facilities

See DIAG
GCS dumps, analyzing

See DIAG
GCS dumps, initiating

See DIAG
GCS external tracing facilities

See DIAG
GCS internal trace table

See DIAG
GCS internal trace table formats

See DIAG
GDUMP command

See DIAG
GENDIRT command

creating auxiliary directories 342
format of 340

general I/O DIAGNOSE code X'20'
See SFPROG

generate accounting records for the virtual user
DIAGNOSE code X'4C'

See SFPROG
generating

CMS/DOS 270
VSE system 270

GENIMAGE command
See CPPROG

GENIMAGE service program
See CPPROG

GENMOD command
See also DIAG
creating .program modules 71
creating user-written CMS command 71
description of 209

GET command used by programmable operator
See SFPROG

GET macro 201
GETMAIN macro

free element chain 25
storage management 16, 24
storage maximum 25

GETMAIN macro (SVC 4) 192
Getmain via SVC (type X'08') entry

See DIAG
GETPOOL/FREEPOOL macro 192
getting national languages on your system

See SFPROG
GLOBAL command

identify TXTLIBs 182
in CMS/DOS 209
used to identify DOSLIBs 243
used to identify macro libraries 180
used to identify macro libraries in

CMS/DOS 226
used to identify TXTLIBs 181

GTF header
See DIAG

GTRACE (type X'OE') entry
See DIAG

414 VM/SP CMS for System Programming

GTRACE macro
See DIAG

GUESTR option of PER command
See DIAG

GUESTV option of PER command
See DIAG

hash table complex (HASHTAB)
See HASHTAB (hash table complex)

HASHTAB (hash table complex) 2
HELP files
HELP subcommand of DUMPS CAN command

See DIAG
HEX subcommand of TRAPRED command

See DIAG
history information, saving 69, 72, 183
HNDEXT macro 13, 352
HNDINT macro 352
HNDIUCV macro 352

See also SFPROG
HNDSVC macro 352
HOSTCHK statement

See SFPROG
HX (Halt Execution) immediate command

effect on DLBL definitions 220
HX subcommand of DUMPS CAN command

See DIAG
hyperblock mapping table (HYPMAP)

See HYPMAP (hyperblock mapping table)
HYPMAP (hyperblock mapping table) 2

I/O (input/output)
assignments 216, 217
defining files 67
defining VSAM files 284
device assignments in CMS/DOS 214, 245
files, defining 67
interrupt handler in DMSITI module 10
interrupts 10
listing assignments 217
macros 249
tape 292
tapes 303

I/O interrupt (type X'03') entry
See DIAG

IDENTIFY macro (SVC 41) 195
IDENTIFY VMCF function

See SFPROG
identifying

macro libraries 180

macro libraries to search in CMS/DOS 226
master catalog for VSAM in CMS/DOS 286
multivolume VSAM files in CMS/DOS 292
multivolume VSAM files in OS 302
VSAM master catalog in OS 297

lIP (ISAM Interface Program) 310
IJSYSCL ddname defined in CMS/DOS 219
IJSYSCT ddname 296
IJSYSRL ddname defined in CMS/DOS 219
IJSYSSL ddname defined in CMS/DOS 219
IMMBLOK macro 352
IMM CMD macro 352
immediate commands created by user 154
imperative macros 267
IMPORT access method services function 307
importing VSAM data sets 307
INCLUDE command

creating program modules 71
issuing 68
options

AUTO 69
CLEAR 69
DUP 69
HIST 69
LIBE 69
ORIGIN 69
RESET 69
RLDSAVE 69

VSE linkage editor control statement, specifying
in 242

INDICATE command
See DIAG

INITIATE logical device support facility function
See SFPROG

input spool file manipulation DIAGNOSE code X'14'.
See SFPROG

input/output (I/O)
See I/O (input/output)

INSERT statement 98
Installation Discontiguous Shared Segment

(DCSS) 55
installing

CMS batch machine 334
installing the programmable operator facility

See SFPROG
Inter-User Communications Vehicle (IUCV)

See SFPROG
Interactive Problem Control System (IPCS)

See DIAG
internal trace table formats, GCS

See DIAG
internal trace table, CP

See DIAG
internal trace table, GCS

See DIAG
internal trace table, TSAF

See DIAG
internal tracing facilities, GCS

See DIAG
interrupt handler, DMSITI module 10
interrupt handling

See CPPROG
interrupts

CMS macros for handling 85
DMSIOW module 11
DMSITE module 13
DMSITI module 10
DMSITP module 13
DMSITS module 9
external interrupts 13
input/output interrupts 10
machine check interrupts 13
printer interrupts 12
program interrupts 13
punch interrupts 12
reader interrupts 12
SVC
SVC interrupts 9, 43
terminal interrupts 11
user-controlled device interrupts 12

INTSVC for SVC handling routine
CMS SVCs 10
internal linkage SVC 9

invoking the programmable operator facility
See SFPROG

IPCS (Interactive Problem Control System)
See DIAG

IPCS interface files
See DIAG

IPCS variables
See DIAG

IPCSDUMP command
See DIAG

IPCSMAP subcommand of DUMPS CAN command
See DIAG

IPL (Initial Program Load)
See CPPROG

IPL command
BATCH parameter 333
description of 323
format of 324
NOSPROF parameter 333
SA VESYS parameter 324

IPL performance using saved system 336
ISAM

CMS restriction 161
CMS/DOS restriction 212

ISAM Interface Program (lIP)) 310
issue SVC 76 from a second level virtual machine

DIAGNOSE code X'48'
See SFPROG

ITRACE command
See DIAG

IUCV (Inter-User Communications Vehicle)
See SFPROG

IUCV functions

These symbols are used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM Sy~tem Facilities for Programming
DIAG-VM Diagnosis Guide

Index 415

See SFPROG
IUCV macro instruction

See SFPROG
IUCV subcommand of DUMPSCAN command

See DIAG

job control cards (fJOB) 335
job control language equivalent in CMS 158
journaling

See CPPROG

keys
DMSEXS macro 41
DMSKEY macro 39
PSW 39

keys, storage protection 38

label
DOS disks 286
OS VSAM disks, determining for AMSERV 297
using VSAM tapes in CMS/DOS 294
using VSAM tapes in OS 303

LANGBLK macro 352
LANGGEN command

See SFPROG
LANGMERG command

See SFPROG
language, CMS command 1
languages, national

See SFPROG
LGLOPR statement

See SFPROG
libraries

CMS/DOS 270
copying modules from 222
DOS core image 225
DOS libraries in CMS/DOS 2~0
DOS/VSE source statement used in CMS 221
programs, CMS/DOS 271
types

LOADLIBs 171
MACLIBs 171
TXTLIBs 171

using directories 224
volumes for CMS/DOS directory entries 271

LINEDIT macro 352

416 VM/SP CMS for System Programming

LINERD macro 352
LINEWRT macro 352
LINK command

See CPPROG
link edit

in CMS/DOS 240
modules form DOS relocatable libraries 242
output 242
specifying control statements 241
TEXT files 241

LINK macro (SVC 6) 192
linkage

OS control statements supported by TXT LIB
command 181

linkage editor map
created by DOS/VSE linkage editor 243
option of VSE ACTION control statement, effect
in CMS/DOS 243

LIOCS routines suppo.cted by CMS/DOS 268
LISTCAT access methods services function 277
LISTCRA access methods services function 277
LISTDS command

listing
DOS files 211
extents occupied by VSAM files 281
free space extents 281
OS and DOS disks 281
OS and DOS files 281

used with OS data sets 159
listing

information about MACLIB members 229
input/output assignments 217
listing members of a MACLIB 176
logical unit assignments in CMS/DOS 217
MACLIB members 231

LISTING file
changing filename 278
created by AMSERV command 277
created by assembler, output filemode 65
created by ESERV command 223

LISTIO command 209
listing device assignments 217

LKED command
description 159
specifying input to 186
using 186

LOAD command
See also DIAG
creating program modules 71
issuing 68
loading TEXT files 67
options

AUTO 69
CLEAR 69
DUP 69
HIST 69
LIBE 69
ORIGIN 69
RESET 69

RLDSAVE 69
START 67

LOAD macro (SVC 8)
load map generation

See DIAG
load maps

See also DIAG

192

created by CMS loader 69
produced by LOAD and INCLUDE

commands 69
loader

control statements 69
controlling the CMS loader 68

loader tables in CMS 16
loader terminate (LDT) control statement

usage 182
loading

core image phases into storage for
execution 244

discontiguous shared segment DIAGNOSE code
X'64'

See SFPROG
programs into storage 71

LOADLIBs 171
LOADMOD command 209
LOADSYS function

See SFPROG
LOADTBL command used by programmable

operator
See SFPROG

LOCATE (UP) subcommand of DUMPS CAN
command

See DIAG
LOG command used by programmable operator

See SFPROG
log file

See also SFPROG
updating 99

LOGGING statement
See SFPROG

logical device support facility
See SFPROG

logical device support facility DIAGNOSE code
X'7C'

See SFPROG
logical operator

See SFPROG
logical record length of FILEDEF command
logical units

assigning in CMS/DOS 214
LOGON command

See CPPROG
*LOGREC

See SFPROG
loop procedures

See DIAG
looping programs

165

See DIAG

machine check
See CPPROG

machine check interrupts 13
MACLIB command

ADD function 173, 228
CaMP function 174, 229
DEL function 174, 228
description 172
example 228
GEN function 172, 227
MAP function 174, 229
REP function 173, 228
using 227

MACLIBs
adding a member 173, 228
adding COpy files 173, 228
CMS commands that recognize MACLIBs 175
compressing 174, 229
copying members 176
creating 172, 226, 227
deleting a member 173, 174, 228
example 173
extracting a member 175
finding out about MACLIB members 180,229
lis ting con ten ts 174
listing information about members 180, 229
manipulating members 230
moving members into other files 176
querying in CMS/DOS 235
replacing a member 173, 228
system 180, 235
using 225
VSE assembler language restricted use in

CMS/DOS 238
MACLIST command

listing members of a MACLIB 176
sample screen 231
using 176, 231

macro libraries
adding a member 173, 228
adding COpy files 173, 228
CMS commands that recognize MACLIBs 175
compressing 174, 229
copying members 176
creating 172, 226, 227
deleting a member 173, 174, 228
example 173
extracting a member 175
finding out about MACLIB members 180, 229
listing contents 174
listing information about members 180, 229
manipulating members 230

These symbols are used in the index to refer to other VM and VMjSP books:
CPPROG-V~jSP C.P for. System Programming SFPROG-VM System Facilities for Programming
DIAG-VM DiagnOSIS GUIde

Index 417

moving members into other files 176
querying in CMS/DOS 235
replacing a member 173, 228
system 235
using 225
VSE assembler language restricted use in

CMS/DOS 238
macro libraries (MACLIBs)

See MACLIBs
macro library in CMS 351
macros

ABNEXIT 5
CMS 351
declarative -258
DMSEXS 41
DMSFREE 15, 27
DMSFRES 35
DMSFRET 33
DMSKEY 39
examples 75
FSCB 75
GETMAIN 16
GETMAIN/FREEMAIN (SVC 10) 193
HNDEXT 13
imperative 267
list of 351
manipulating disk files 75
OPEN 165
OS 188
OS simulation 191
SAM 258,267
STRINIT 24
supervisor 250
using 75
VSAM, supported under CMS 312
VSE assembler language macros supported in

CMS 236
VSE macros supported by CMS/DOS 249

MAINHIGH 246
management of data

See DIAG
management of problems

See DIAG
manipulating members of a MACLIB 175
MAP command

See DIAG
map compressing routine

See DIAG
MAP files

created by DOSLKED command 243
created by DSERV command 224

MAP option ofGENMOD command
See DIAG

MAP option of LOAD command
See DIAG

MAPA subcommand of DUMPS CAN command
See DIAG

MAPN subcommand of DUMPS CAN command
See DIAG

master catalog sharing 279

418 VM/SP CMS for System Programming

MEMBER option of FILEDEF command 166
Message All System Service

See SFPROG
message complete external interrupt in IUCV

See SFPROG
MESSAGE function for SPOOL system service

See SFPROG
message pending external interrupt in lUCY

See SFPROG
message repository

See SFPROG
message repository files

creating 146
creating HELP files 154
creating your own messages 153
rules for creating 148
using 145
using dictionary substitution 151
using substitution 151

Message System Service
See SFPROG

messages
creating 153

minidisks
extents 295
file directory of 328
restriction on using EXPORT/IMPORT with

VSAM 307
shared, EDF R/O 328
temporary 283
transporting to OS system after using with CMS

VSAM 281
using with VSAM data sets 281

mixed environment use of the programmable
operator

See SFPROG
MODMAP command

See DIAG
module load map

See DIAG
modules

DMSABN 5
DMSINA 54
DMSINT 55
DMSIOW 11
DMSITE 13
DMSITI 10
DMSITP 13
DMSITS 9,43
DMSPAG 34
DOS/VSE relocatable, copying into CMS

files 222
relocatable, link-editing in CMS/DOS 241

MONITOR command
See DIAG

MONITOR START command
See DIAG

MOVEFILE command
copying OS data sets 169

extracting a member from a MACLIB 230
options

PDS 170
PDS option 170
used with OS data sets 159

MREGS subcommand of DUMPS CAN command
See DIAG

MRIOBLOK subcommand of DUMPS CAN command
See DIAG

*MSG
See SFPROG

*MSGALL
See SFPROG

MSS (Mass Storage System)
See CPPROG

MSS communication DIAGNOSE code X'78'
See SFPROG

MSSF SCPINFO command
See SFPROG

MSSFCALL DIAGNOSE code X'80'
See SFPROG

MULT option
in CMS/DOS 285
of the DLBL command 295

multiple address stops
See DIAG

multiple extents 291, 301
multiple updates

CTL option of XEDIT command 107
using UPDATE command 102

multiprocessor
See CPPROG

multiprocessor mode (MP)
See CPPROG

multivolume extents 291, 301

named segments, finding, loading, purging
See SFPROG

NAMESYS macro 321
national languages

See SFPROG
native languages

See SFPROG
*NCCF

See SFPROG
NCCF (Network Communications Control Facility)

See SFPROG
NCCF logical operator

See SFPROG
NCPDUMP command

See DIAG
NCPDUMP service program

See DIAG
NETWORK command

See DIAG
Network Communications Control Facility (NCCF)

See SFPROG
network dump operations

See DIAG
non-recoverable machine check

See DIAG
nonrelocatable modules

creating 71
NOTE macro 198
NOTIFY function for SPOOL system service

See SFPROG
NUCALPHA 16
nucleus free storage

allocating 32
description of 15

nucleus load map
See DIAG

nucleus, CMS 16
NUCOMEGA 16
NUCON macro 352
NUCSIGMA 17

OPEN macro 165
OPEN/OPENJ macro (SVC 19/22) 194
opening

CMS files 81
Operating System (OS)

access method support 199
CMS support for 4, 273
compilers, CMS usage 4
data management simulation 188
data sets 159
disks

compatibility with DOS disks 280
determining free space 281
extents 295
formatting using DSF 283
using with AMSERV 278

files
handling files on CMS disks 188
handling files on OS disks 189

formatted files 199
FREEMAIN macro 26
GETMAIN macro 24
linkage editor control statements read by

TXTLIB command 181
macro simulation 159
macros 188, 191

ABEND 193
ATTACH 195
BLDL 193
BSP 198

These symbols are used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming
DIAG-VM Diagnosis Guide

Index 419

CALL 198
CHAP 195
CHECK 198
CHKPT 197
CLOSE/TCLOSE 194
DCB 198
DELETE 193
DEQ 196
DETACH 197
DEVTYPE 194
ENQ 196
EXCP 192
EXIT/RETURN 192
EXTRACT 195
FEOV 195
FIND 194
FREEDBUF 196
FREEMAIN 192
GET 201
GETMAIN (SVC 4) 192
GETMAIN/FREEMAIN 193
GETPOOL/FREEPOOL 192
IDENTIFY 195
LINK 192
LOAD 192
NOTE 198
OPEN/OPENJ 194
PGRLSE 198
POINT 198
POST 192
PUT 201
PUTX 201
RDJFCB 197
READ 202
RESTORE 193
SNAP 196
SPIE 193
STAE 196
STAX 198
STIMER 196
STOW 194
SYNADAF 198
SYNADRLS 198
TCLEARQ 198
TGET/TPUT 198
TIME 193
TRKBAL 195
TTIMER 196
WAIT 192
WRITE 202
WTO/WTOR 195
XCTL 192
XDAP 191

reading data sets 161
simulated data sets 160
Isimulated OS supervisor calls 189
/ simulation in CMS 157
supervisor calls 189
tape volume switching 204
terminal sessions 353

420 VM/SP CMS for System Programming

TXTLIBs 181
OPTION command 209
OS (Operating System)

access method support 199
CMS support for 4, 273
compilers, CMS usage 4
data management simulation 188
data sets 159, 203
disks

compatibility with DOS disks 280
determining free space 281
extents 295
formatting using DSF 283
using with AMSERV 278

files
handling files on CMS disks 188
handling files on OS disks 189

formatted files 199
FREEMAIN macro 26
GETMAIN macro 24
linkage editor control statements read by
TXTLIB command 181

macro simulation 159
macros 188, 191

ABEND 193
ATTACH 195
BLDL 193
BSP 198
CALL 198
CHAP 195
CHECK 198
CHKPT 197
CLOSE/TCLOSE 194
DCB 198
DELETE 193
DEQ 196
DETACH 197
DEVTYPE 194
ENQ 196
EXCP 192
EXIT/RETURN 192
EXTRACT 195
FEOV 195
FIND 194
FREEDBUF 196
FREEMAIN 192
GET 201
GETMAIN (SVC 4) 192
GETMAIN/FREEMAIN 193
GETPOOL/FREEPOOL 192
IDENTIFY 195
LINK 192
LOAD 192
NOTE 198
OPEN/OPENJ 194
PGRLSE 198
POINT 198
POST 192
PUT 201

PUTX 201
RDJFCB 197
READ 202
RESTORE 193
SNAP 196
SPIE 193
STAE 196
STAX 198
STIMER 196
STOW 194
SYNADAF 198
SYNADRLS 198
TCLEARQ 198
TGET/TPUT 198
TIME 193
TRKBAL 195
TTIMER 196
WAIT 192
WRITE 202
WTO/WTOR 195
XCTL 192
XDAP 191

reading data sets 161
simulated data sets 160
simulated OS supervisor calls 189
simulation in CMS 157
supervisor calls 189
tape volume switching 204
terminal sessions 353
TXTLIBs 181

OS linkage editor control statement
ALIAS statement 183
assigning entry point names 182
ENTRY statement 182
NAME statement 182
SETSSI card 183

OS/VSAM
macros

ACB 312
CHECK 312
ENDREQ 312
ERASE 312

OSMACRO MACLIB 180, 236
OSMACR01 MACLIB 180, 236
OSPOINT subcommand of DUMPS CAN command

See DIAG
OSRUN command 184
OSVSAM MACLIB 181, ~36
output

controlling the filename 278
devices restricted in CMS/DOS 218
file produced by ASSEMBLE command 239
linkage edit CMS DOSLIBs 242
listings from AMSERV command 277
printed access method service listing 277
records, sequencing 98

overlay structures
description 345

dynamic load 347
example 346
prestructured 346

page management 34
page release function DIAGNOSE code X'10'

See SFPROG
pageable module, identify and locate

See DIAG
paging

hash table complex (HASHTAB) 2
hyperblock mapping table (HYPMAP) 2
ways to control 2

parameter list (PLIST)
See PLIST (parameter list)

parameter lists of IUCV functions
See SFPROG

P ARSECMD macro 352
P ARSERCB macro 352
P ARSERUF macro 352
parsing facility 113
partition size specified for execution in

CMS/DOS 246
partitioned data s~t (PDS)

copying into CMS files 170
specifying members with FILEDEF

command 170
password

defining for VSAM catalogs 289
for VSAM catalogs in CMS/DOS 289
for VSAM catalogs in OS 299

passwords
See CPPROG

paths, IUCV
See SFPROG

PA2 program function key controlling DIAGNOSE
code X'54'

See SFPROG
PER command

See DIAG
performance of virtual machines

See CPPROG ' .
PERM option of FILEDEF command 165, 166
PGRLSE macro (SVC 112) 198
PLIST (parameter 1i~t) 43, 46

extended '46
tokenized . 46
using FSCB 83

PLU (programmer logical units) assigned in
CMS/DOS 214

PMX (Programmable Operator/NCCF Message
Exchange)

See SFPROG

These symbols are used in the index to refer to other VM and VMjSP books: ,
CPPROG-V~jSP C.p for. System Programming . SPPRQO:-VM System Facilities for Programming
DIAG-VM DiagnOSIS GUIde

Index 421

POINT macro 198
POST macro (SVC 2) 192
poster, CP internal trace table

See DIAG
PRB command

See DIAG
PRBnnnnn aaaaaaaa file

See DIAG
PRBnnnnn dump file

See DIAG
PRBnnnnn report

See DIAG
PRBnnnnn report file

See DIAG
PRB00003 report file with status updates added

See DIAG
preferred auxiliary files 108
preferred filetypes 3
preferred level updating 108
PRESENT logical device support facility function

See SFPROG
prestructured overlays 346
PRINT access methods services function 277
PRINT subcommand of DUMPS CAN command

See DIAG
printer

See CPPROG
printer interrupts 12
PRINTER subcommand of TRAPRED command

See DIAG
printing

a MACLIB member 230
access method services listings 277

printing tape dump
See DIAG

PRINTL macro description 352
PRINTL macro usage 85
privilege classes for a user

See CPPROG
PROB command

See DIAG
problem analysis

See DIAG
problem diagnosis

See DIAG
problem exist?

See DIAG
problem identification

See DIAG
problem inquiry data sheet

See DIAG
problem management

See DIAG
problem number assignment

See DIAG
problem report file (PRBnnnnn REPORT)

See DIAG
problem reporting

See DIAG
problem types

422 VM/SP CMS for System Programming

See DIAG
procedures, DOS/VSE, copying into CMS files 222
processor

See CPPROG
PROFILE EXEC file

CMS/DOS VSAM user 286
OS VSAM user 296

program check debugging
See DIAG

program exceptions
See DIAG

program interrupt (type X'04') entry
See DIAG

program interrupts 13
program modules, creating 71
Program Support Representative (PSR)

See DIAG
program temporary fix (PTF)

See DIAG
programmable operator facility

See SFPROG
Programmable Operator/NCCF Message Exchange

(PMX)
See SFPROG

programs
developing 4
executing 66
input and output files, identifying 162
interrupts 13
libraries 171
specifying virtual partition size 246
updating, with XEDIT UPDATE option 95

PROPCHK statement
See SFPROG

PROPRTCV for converting routing tables
See SFPROG

protected application facility DIAGNOSE code
X'BO'

See SFPROG
PRTDUMP command

See DIAG
PSA (Prefix Storage Area)

See CPPROG
PSERV command

description of 209
using 222

pseudo timer DIAGNOSE code X'OC'
See SFPROG

PSR (Program Support Representative)
See DIAG

PSW (program status word)
DMSEXS macro 41
DMSKEY macro 39
keys 39
storage protection keys 38

PTF (program temporary fix)
See DIAG

punch interrupts 12
PUNCHC macro

description of 352
usage 85

punching a MACLIB member 230
PURGE IUCV and VMCF functions

See SFPROG
PURGESYS function

See SFPROG
purging discontiguous shared segment DIAGNOSE

code X'64'
See SFPROG

PUT macro 201
PUTX macro 201
PVCENTRY macro 353

QUERY command
description of 210
MACLIBs available 235

QUERY IUCV function
See SFPROG

QUERY SRM command
See DIAG

QUIESCE IUCV and VMCF functions
See SFPROG

QUIT subcommand of DUMPSCAN command
See DIAG

QUIT subcommand of TRAPRED command
See DIAG

RDCARD macro 353
RDJFCB macro (SVC 64) 197
RDTAPE macro 353
RDTERM macro 353
READ functions for SPOOL system service

See SFPROG
read LOGREC data DIAGNOSE code X'30'

See SFPROG
READ macro 202
read system dump spool file DIAGNOSE code X'34'

See SFPROG
read system symbol table DIAGNOSE code X'38'

See SFPROG
read/write operation 82
reader interrupts 12
reading

CMS disk files 79
DOS files 212
OS data sets 203
restrictions

OS data sets 161

SAM files 212
SAM files 212
tapes 303
variable length records 80
VSAM tape files 294

Ready; message
CPU times displayed 46

real channel program support DIAGNOSE code
X'98'

See SFPROG
real storage

See CPPROG
RECEIVE IUCV and VMCF function

See SFPROG
RECFM option of FILEDEF command 165
record format

DOS files 213
program input and output files 165

records, accounting
See CPPROG

records, sequencing 98
recovery, CMS abend 6
references, resolving unresolved 68
REGEQU macro 353
register

contents after CMS command execution 44
restoration 62
usage 43

REGS subcommand of DUMPSC}\.N command
See DIAG

REJECT IUCV and VMCF functions
See SFPROG

relative record number 77
RELEASE command

used with OS disks 159
releasing storage

allocated by DMSFREE 33
allocated by GETMAIN 26
by ab'~nds 33
by an abend 26
by DMSFRET 34
by DMSPAG 34
by FREEMAIN macro 26
by the STRINIT macro 26

relocatable files
modules, link-editing in CMS/DOS 241
object files, loading into storage for

execution 67
using the LOAD and START commands 67

repetitive output
See DIAG

REPLACE statement 98
replacing

member of a MACLIB in CMS/DOS 228
member of a MACLIB in OS 173

REPLY IUCV and VMCF function
See SFPROG

reporting problems

These symbols are used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming
DIAG-VM Diagnosis Guide

Index 423

See DIAG
repository files

creating message 146
message 145

REPRO access method services function 307
Resource Access Control Facility (RACF)

See CPPROG
responding to prompting messages from AMSERV in
an EXEC 309

responsibilities of user for CMS/DOS 270
RESTORE macro (SVC 17) 193
restrictions

BDAM 202
eMS/DOS 272
CMS, saved system 321
ddnames in OS VSAM programs 294
executing

OS programs in CMS 66
programs executing in transient area 73
reading

OS data sets 161
SAM files 212

using
DOS macro libraries in CMS/DOS 225
minidisks with VSAM data sets 281
OS programs in CMS/DOS 208

RESUME IUCV and VMCF function
See SFPROG

retrieve a group name DIAGNOSE code X'AO'
See SFPROG

RETRIEVE BUFFER IUCV function
See SFPROG

return codes
displayed in ready message 46
DMSXFLPT 87
DMSXFLRD 87
DMSXFLST 86
DMSXFLWR 87
from access method services 277
from SUBCOM function 61
passed by register 15 46

REUSE subcommand of DUMPS CAN command
See DIAG

RIOBLOK subcommand of DUMPS CAN command
See DIAG

ROUTE statement
See SFPROG

routing table (RTABLE)
See SFPROG

RSERV command
description of 210
examples 222

RTABLE (routing table)
See SFPROG

424 VM/SP CMS for System Programming

S-STAT 16
SAD MACRO

See DIAG
SADGEN ASSEMBLE file

See DIAG
SADGEN TEXT file

See DIAG
SADUMP EXEC

See DIAG
SAM (sequential access method)

declarative macros 258, 267
I/O macros 258, 267
reading 212

sample terminal sessions
for DOS programmers 360
for OS programmers 353
using access method services 369

save the 370X control program image DIAGNOSE
code X'50'

See SFPROG
saved system

See also CPPROG
restrictions for CMS 321

SA VEFD command 328
saving

CMS 321
history information 69, 72, 183

saving or loading a 3800 named system DIAGNOSE
code X'74'

See SFPROG
saving the CP message repository DIAGNOSE code

X'CC'
See SFPROG

SCBLOCK control block
created by SUBCOM 59

SCBLOCK macro 353
scheduling virtual machines

See CPPROG
SCIF (Single Console Image Facility)

See SFPROG
SCPINFO command

See SFPROG
screen management VM/SP SNA support

See SFPROG
SCRIPT command execution restrictions in

CMS/DOS 208
scroll interface, DUMPS CAN

See DIAG
SCROLL subcommand of DUMPSCAN command

See DIAG
SDUMP command

See DIAG
search order

for executable phases in CMS/DOS 244
for routines or commands in CSMMS 54
for TEXT files and TXTLIB members 182

/'

used by ASSEMBLE command 239
searching libraries 180
SELECT function for SPOOL system service

See SFPROG
SEND IUCV and VMCF functions

See SFPROG
SEND/RECV VMCF function

See SFPROG
SENDREQ macro 353
SENDX VMCF function

See SFPROG
SEQUENCE statement 97
sequencing ,

output records 99
using XEDIT SERIAL subcommand 97

sequential access method (SAM)
See SAM (sequential access method)

service routines 34
SET command

description 210
DOSPART operand 246

SET command used by programmable operator
See SFPROG

SET CONTROL MASK IUCV function
See SFPROG

SET DOS command used to enter or exit DOS
environment 208

set languages DIAGNOSE code X'C8'
See SFPROG

SET MASK IUCV function
See SFPROG

setting UPS I byte 247
SEVER IUCV function

See SFPROG
SFPROG

See VM System Facilities for Programming
shadow table maintenance DIAGNOSE code X'6C'

See SFPROG
shared segments

See CPPROG
shared storage 328
sharing virtual disks 3
SHVBLOCK macro 353
*SIGNAL

See SFPROG
Signal System Service

See SFPROG
simulated OS supervisor calls 189
simulation

of VSE functions by CMS 249
OS macro 159

Single Console Image Facility (SCIF)
See SFPROG

single processor mode
See CPPROG

single system use of the programmable operator
See SFPROG

SIO (type X'06') entry

See DIAG
SNA (System Network Architecture)

See SFPROG
SNAP macro (SVC 51) 196
sorting directories of DOS/VSE private

libraries 224
source files

adding comments 99
deleting records 98
inserting records 98
multiple updates to using CTL option of

XEDIT 107
replacing records 98
sample using UPDATE command 100

spanned records, usage 201
Special Message Facility

See SFPROG
SPIE macro (SVC 14) 193
*SPL

See SFPROG
spool file

See CPPROG
spool file external attribute buffer manipulation

DIAGNOSE code X'B8'
See SFPROG

SPOOL System Service
See SFPROG

spooling
See CPPROG

SSERV command
description of 210
examples 221
using 221

STAE macro (SVC 60) 196
stand-alone dump facility

See DIAG
stanqard DASD I/O DIAGNOSE code X'18'

See SFPROG
START command

executing a file 67
executing TEXT files 67
used with FETCH command 244

start of LOGREC area DIAGNOSE code X'2C'
See SFPROG

starting, program execution in CMS 67
STAT command

See DIAG
statall local file

See DIAG
STATE command used with OS data sets 159
status file

See DIAG
STAX macro (SVC 96) 198
STCP command

See DIAG
STIMER macro (SVC 47) 196
STOP command used by programmable operator

See SFPROG

These symbols are used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming
DIAG-VM Diagnosis Guide

Index 425

stop execution
See DIAG

storage
allocation of 27, 32
assembler requirements 345
CMS nucleus 16
DMSFREE macro 15
DMSFREE management 27
DMSNUC 15, 21
free storage 23
loader tables 16
managing 23
map, CMS 17
nucleus free 15, 23
protection keys 38
releasing 26, 34
shared 328
structure of 15
transient program area 15, 23
user free 15, 23
user program area 16, 23

storage available in your virtual machine calculated
by CMS 246

storage contents, altering
See DIAG

storage protection
See CPPROG

STORE command
See DIAG

store extended-identification code DIAGNOSE code
X'OO'

See SFPROG
store real CP data

See DIAG
store virtual data

See DIAG
STOW macro (SVC 21) 194
STRINIT macro

description of 24, "353
format of 24
initializing pointers for storage management 24
releasing storage 26

structure of CMS storage 15
structured data base (SDB)

See DIAG
suballocated VSAM cluster, defining 305
SUBCOM function

calling routines dynamically 59
command search function 58
register 1 contents 49
return codes 61

summary of changes 379
summary record file

See DIAG
supervisor calls 189
SVC

CMS/DOS support routines 250
DMSITS module 9
handling routine

DMSITS 43

426 VM/SP CMS for System Programming

INTSVC 43
interrupts 9
linkage 48
types 48

invalid SVCs 53
as and VSE SVC simulation 53
SVC 202 48
SVC 203 52
user-handled 53

SVC interrupt (type X'05') entry
See DIAG

SVC interrupts
CMS SVCs 10
description of 9
internal linkage SVC 9

SVC save area (SVCSA VE)
See DIAG

SVC 199 services
See DIAG

SVC 202 9
description of 48
entered from a program 54
extended PLIST 46
processing 57
return codes 51
search hierarchy 54
tokenized PLIST 46

SVC 203 9,52
SVCTRACE command

See DIAG
switching, CMS tape volume 204
SYMP subcommand of DUMPSCAN command

See DIAG
symptom records

See DIAG
symptom summary file

See DIAG
symptom summary file conversion

See DIAG
SYNADAF macro (SVC 68) 198
SYNADRLS macro (SVC 68) 198
SYSCAT system logical unit

assigning in CMS/DOS 285
SYSCLB system logical unit

assigning in CMS/DOS 216
unassigning 245

SYSCOR macro
See DIAG

SYSIN system logical unit
assigning in CMS.DOS 215
input for ESERV command 223

SYSIPT system logical unit 215
SYSLOG system logical unit 215
SYSLST system logical unit

assigning in CMS/DOS 215
output from ESERV program 223

SYSOPR macro
See DIAG

SYSPCH system logical unit

" ----~

assigning in CMS/DOS 215
output from ESERV program 223

SYSPROF EXEC
description of 322
functions of 323

SYSRDR system logical unit 215
SYSRLB system logical units assigned in

CMS/DOS 216
SYSSLB system logical units assigned in

CMS/DOS 216
system abend

See DIAG
system information, collect and analyze

See DIAG
system logical units

SYSCLB 216
SYSIN 215
SYSIPT 215
SYSLOG 215
SYSLST 215
SYSPCH 216
SYSRDR 215
SYSRLB 216
SYSSLB 216

system MACLIBs 180
CMS macros 235
CMSLIB 180
DMSSP 180
DOSMACRO 181
OS macros 235
OSMACRO 180
OSMACR01 180
OSVSAM 181
TSOMAC 181

System Network Architecture (SNA)
See SFPROG

System Product Editor (XED IT)
See XEDIT (System Product Editor)

system profile 321
bypassing 327
creating 325
description of 322
functions of 328

system save area
format of 63
modifications of 62

system security
See CPPROG

system service, CP
See SFPROG

SYSxxx (programmer logical units)
programmer logical units, assigning 214

TACTIVE subcommand of DUMPSCAN command
See DIAG

tailoring your system 321
tape volume switching in CMS 204
TAPECTL macro 353
tapes

considerations for CMS/DOS 214
input 303
output 303
reading 303
used for AMSERV input and output 292

T APESL macro 353
TCLEARQ macro (SVC 94) 198
temporary disks

formatting using DSF 283
using for VSAM data sets 283

TEOVEXIT macro 353
terminal interrupts 11
terminals

CMS interface 88
macros for communication 84
sample sessions for DOS programmers 360
sample sessions for OS programmers 353
sample sessions using access method

services 369
TERMINATE ALL logical device support facility

function
See SFPROG

TERMINATE logical device support facility
function

See SFPROG
termination, abnormal

See abend (abnormal termination)
terminology

CMS/DOS 207
OS 158

TEST COMPLETION IUCV function
See SFPROG

TEST MESSAGE IUCV function
See SFPROG

TEVC (trace entry verification code)
See DIAG

TEXT files
adding as linkage editor control
statements 182

created by assembler, output filemode 65
executing 66
link-editing in CMS/DOS 241
loading 67

TEXTSYM statement
See SFPROG

TGET/TPUT macro (SVC 93) 198
TIME macro (SVC 11) 193
timers

These symbols are used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming
DIAG-VM Diagnosis Guide

Index 427

See CPPROG
TLOADL subcommand of DUMPSCAN command

See DIAG
TOD-clock accounting interface

See SFPROG
tokenized PLIST 46
TOP subcommand of TRAPRED command

See DIAG
TRACCURR (current CP internal trace table entry)

See DIAG
TRACE command

See CPPROG
See DIAG

trace entry verification code (TEVC)
See DIAG

trace execution
See DIAG

trace real machine events
See DIAG

TRACE subcommand of DUMPSCAN command
See DIAG

trace table, CP
See CPPROG

TRACEND (end of CP internal trace table)
See DIAG·

tracing
See DIAG

tracing capabilities in EXECs
See DIAG

tracing storage alteration using PER
See DIAG

tracking number per cylinder on disk devices 296
TRACSTRT (start of CP internal trace table)

See DIAG
transient program area

creating modules to execute in 72
description of 23
location in virtual storage 72
restrictions on modules executing in 72
transient program area 15

transient routines
$$BCLOSE 268
$$BDUMP 268
$$BOPEN 268
$$BOPENR 268
$$BOPNLB 268
$$BOPNR2 268
$$BOPNR3 268
$$BOSVLT 269
supported by CMS/DOS 268

transporting VSAM data sets 281
TRANTBL macro 353
TRAPRED command format

See DIAG
TRAPRED facility

See DIAG
TRAPRED subcommands

See DIAG
TRKBAL macro (SVC 25) 195
TSAB subcommand of DUMPS CAN command

428 VM/SP CMS for System Programming

See DIAG
TSAF console log sample

See DIAG
TSAF debugging

See DIAG
TSAF dumps

See DIAG
TSAF internal trace table

See DIAG
TSAF QUERY command

See DIAG
TSAF SET ETRACE command

See DIAG
TSAFIPCS MAP

See DIAG
TSOMAC MACLIB 181, 236
TTIMER macro (SVC 46) 196
TVSPARMS macro 353
TXTLIB command

creating 181
description 181
ENTRY statement 182
executing 182
FILENAME option 181
GEN function 181
loading 182
members, creating a directory entry for 182
OS linkage editor control statements
supported 181

SETSSI card 183
specify an alias name 183
usage 181

TXTLIBs
TYPE subcommand of TRAPRED command

See DIAG
TYPEBACK subcommand of TRAPRED command

See DIAG
typenum subcommand of TRAPRED command

See DIAG

UCS (Universal Character Set)
See CPPROG

UCSB (Universal Character Set Buffer)
See CPPROG

unassigning logical unit assignments in
CMS/DOS 217

UNAUTHORIZE VMCF function
See SFPROG

unexpected results procedures
See DIAG

unique clusters, defining 306
UP subcommand of TRAPRED command

See DIAG
UPDATE command control statement usage 97
updating

multiple 102
preferred level 108
programs 95
source file, using CTL option of XEDIT 107
UPDATE command 95
VMFASM EXEC 109
VSE 270

updating problem report
See DIAG

updating VM/SP directory DIAGNOSE code X'3C'
See SFPROG

UPSI (user program switch indicator)
byte, setting in CMS/DOS 247
operand, of CMS SET command, example 247
setting 247

user area (USERSECT) 21
user free storage

allocating 32
DMSFREE requests 15, 23

user privilege classes
See CPPROG

user program area
description of 16, 23
GETMAIN macro 24
over laying programs in 72

user program switch indicator (UPS I)
See UPSI (user program switch indicator)

user responsibilities for CMS/DOS 270
user save area 63
user-controlled device interrupts 12
user-written commands

creating 71, 73
USERMAP subcommand of DUMPS CAN command

See DIAG
USERSECT (user area) 21
USERSECT macro 353

variable length record
reading using FSREAD macro 80
writing using FSWRITE macro 80

VIOBLOK subcommand of DUMPSCAN command
See DIAG

virtual console function DIAGNOSE" code X'08'
See SFPROG

virtual machine
See CPPROG

virtual machine assignments 218
virtual machine assist feature

See CPPROG
Virtual Machine Communication Facility (VMCF)

See SFPROG
virtual machine data, recording

See DrAG
virtual machine debugging

See DIAG
virtual machine storage size DIAGNOSE code X'60'

See SFPROG
Virtual Machine/System Product (VM/SP)

See also VM/SP (Virtual Machine/System
Product)

CMS subsystem 1
virtual printer external attribute buffer

manipulation DIAGNOSE code X'B4'
See SFPROG

virtual storage
assembler requirements 345
overlaying during program execution 72
specifying locations for program execution 72

Virtual Storage Access Method (VSAM)
catalog

defining in CMS/DOS 285, 296
sharing 279
structure 289

CMS support for 273
compiling and executing in CMS 274
data sets

compatibility considerations 312
exporting 307
identifying 294
importing 307
manipulating with AMSERV command 273

defining
catalogs in CMS/DOS 286
clusters 305
master catalog in OS 297
unique clusters 306
user catalogs in CMS/DOS 287

devices supported under CMS 319
disks 281
extent, multiple, information in CMS/DOS 291
extent, multivolume, information in

CMS/DOS 291
files

in CMS/DOS 290
in OS 300

identifying multivolume files
in CMS/DOS 292
in OS 302

macros supported under CMS 312
master catalogs 286
multivolume extents 301
programs

identifying before executing programs 275
reading tape files 294
support of 188, 200
using in CMS 273
writing EXECs 309

virtual storage preservation
See CPPROG

virtual storage, altering
See DIAG

VM/SP (Virtual Machine/System Product)

These symbols are" used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming
DIAG-VM Diagnosis Guide

Index 429

CMS 1
CMS subsystem 1
directory entries, for VSE 271

VM/SP directory updating DIAGNOSE code X'3C'
See SFPROG

VM/VCNA, VM/SP SNA support
See SFPROG

VM/VTAM, VM/SP SNA support
See SFPROG

VMBLOK subcommand of DUMPS CAN command
See DIAG

VMCF (Virtual Machine Communication Facility)
See SFPROG

VMDUMP command
See DIAG

VMDUMP function
See SFPROG

VMDUMP Function DIAGNOSE code X'94'
See SFPROG

VMFASM EXEC
description 109

VMFDOS command 213
VMLOADL subcommand of DUMPS CAN command

See DIAG
Volume Table of Contents (VTOC) 199
VSAM (Virtual Storage Access Method)

catalog
defining in CMS/DOS 285, 296
sharing 279
structure 289

CMS support for 273
compiling and executing in CMS 274
data sets

compatibility considerations 312
exporting 307
identifying 294
importing 307
manipulating with AMSERV command 273

defining
catalogs in CMS/DOS 286
clusters 305
master catalog in OS 297
unique clusters 306
user catalogs in CMS/DOS 287

devices supported under eMS 319
disks 281
extent, multiple, information in CMS/DOS 291
extent, multivolume, information in

CMS/DOS 291
files

in CMS/DOS 290
in OS 300

identifying multivolume files
in CMS/DOS 292
in OS 302

macros supported under CMS 312
master catalogs 286
multivolume extents 301
programs

identifying before executing programs 275

430 VM/SP CMS for System Programming

reading tape files 294
support of 188, 200
using in CMS 273
writing EXECs 309

VSAM dumping information
See DIAG

VSAM option
of DLBL command 295
of DLBL command in CMS/DOS 285

VSCS printing formatted control blocks
See DIAG

VSCS, VM/SP SNA support
See SFPROG

VSE
assembler language macros supported in

CMS 236
CMS support for 4
compilers, CMS usage 4
hardware devices supported 249
I/O macros 249
libraries 270
macros supported under CMS 249
macros, supervisor 250
supervisor control blocks simulated 269
supervisor macros 249, 250
system residence volume, using in

CMS/DOS 208
transient routines 268
transients simulated by CMS/DOS 268
VM/SP directory entries 271

VSE/VSAM
macros

ACB 311
BLDVRP 311
DLVRP 311
ENDREQ 311
ERASE 311

VSE macros supported by CMS 312
VSEVSAM command prompting 312
VTAM printing formatted control blocks

See DIAG
VTAM service machine VM/SP SNA support

See SFPROG
VTOC (Volume Table of Contents) 199

wait bit, modifying
See DIAG

WAIT macro (SVC 1) 192
wait state procedures

See DIAG
W AITD macro 353
W AITECB macro 353
WAITT macro

description of 353
usage 84

WRITE macro 202
writing

CMS disk files 79
lines to terminal 84
specific records in CMS file 80
variable length records 80

WRTAPE macro 353
WRTERM macro

description of 353
examples 84

WTO/WTOR macro (SVC 35) 195

X'64' -- finding, loading, purging named segments
See CPPROG

XAB (External Attribute Buffer)
See SFPROG

XCTL macro (SVC 7) 192
XDAP macro (SVC 0) 191
XEDIT (System Product Editor)

changing files 2
creating files 2
CTL option, creating multiple updates to source
file 107

DMSXFLPT 87
DMSXFLRD 87
DMSXFLST 86
DMSXFLWR 87
interface to access files in storage 86

XEDIT command
changing files 2
creating files 2
editing a MACLIB member 230

Y-STAT 16

ZAP command
See DIAG

ZAPTEXT command
See DIAG

I Numerics I
3081 processor MSSFCALL - DIAGNOSE code X'80'

See SFPROG
3203

See CPPROG
3270 virtual console interface DIAGNOSE code

X'58'
See SFPROG

3480 tape volume serial support DIAGNOSE code
X'DO'

See SFPROG
37XX Control Program

See CPPROG
See SFPROG

370X dump processing
See DIAG

3800 printer
See CPPROG

These symbols are used in the index to refer to other VM and VM/SP books:
CPPROG-VM/SP CP for System Programming SFPROG-VM System Facilities for Programming
DIAG-VM Diagnosis Guide

Index 431

International Business
Machines Corporation
P.O. Box 6
Endicott, New York 13760

File No. S370/4300-36
Printed in U.S.A.

SC24-5286-0

--------___ .a::=-

==='" ==--_--::::::::iI
-.. -----1::1 1::1 1::1 1::1 t:::= c::::II ----= ===""" &::::::I Y

®

VM/SP
CMS for System Programming
Order No. SC24-5286-0

Is there anything you especially like or dislike about this book? Feel free to
comment on specific errors or omissions, accuracy, organization, or
completeness of this book.

If you use this form to comment on the online HELP facility, please copy the
top line of the HELP screen.

____ Help Information line of

READER'S
COMMENT
FORM

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you, and all such information will be considered non confidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead,
contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

IBM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5286-0

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- - ------- - ---- -- ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1"111 .. 11111111111,,111111.111111'11 .. 1111111111111

Fold and tape Please Do Not Staple

--------- -------- ---- - - -----------,-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

____ ___ ~_J "'tr~-~...:..........

.f'''' , •• '.""'"

.... ~ '" - ,~- 1

- ~-~~-'~

Fold and tape

VMjSP
CMS for System Programming
Order No. SC24-5286-0

Is there anything you especially like or dislike about this book? Feel free to
comment on specific errors or omissions, accuracy, organization, or
completeness of this book.

If you use this form to comment on the online HELP facility, please copy the
top line of the HELP screen.

READER'S
COMMENT
FORM

____ Help Information line __ of __

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you, and all such information will be considered non confidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead,
contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

IBM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5286-0

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1 ••• 11 •• 1 i .1 ••• 1.11 •• 11 ••• 1.1 •• 1.1 •• 1 •• 1.1 ••• 11111.1

Fold and tape Please Do Not Staple

--..- ------ -------- - ---- - - -----------,-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

/

I' If

..

SC24-5286-00

